Skip to main content
Log in

Shock Propagation in the Hard Sphere Gas in Two Dimensions: Comparison Between Simulations and Hydrodynamics

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

We study the radial distribution of pressure, density, temperature and flow velocity fields at different times in a two dimensional hard sphere gas that is initially at rest and disturbed by injecting kinetic energy in a localized region through large scale event driven molecular dynamics simulations. For large times, the growth of these distributions are scale invariant. The hydrodynamic description of the problem, obtained from the continuity equations for the three conserved quantities—mass, momentum, and energy—is identical to those used to describe the hydrodynamic regime of a blast wave propagating through a medium at rest, following an intense explosion, a classic problem in gas dynamics. Earlier work showed that the results from simulations matched well with the predictions from hydrodynamics in two dimensions, but did not match well in three dimensions. To resolve this contradiction, we perform large scale simulations in two dimensions, and show that like in three dimensions, hydrodynamics does not describe the simulation data well. To account for this discrepancy, we check in our simulations the different assumptions of the hydrodynamic approach like local equilibrium, existence of an equation of state, neglect of heat conduction and viscosity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Whitham, G.: Linear and Nonlinear Waves. Wiley, New York (1974)

    MATH  Google Scholar 

  2. Barenblatt, G.: Scaling, Self-similarity, and Intermediate Asymptotics: Dimensional Analysis and Intermediate Asymptotics. Cambridge University Press, Cambridge (1987)

    MATH  Google Scholar 

  3. Taylor, G.: The formation of a blast wave by a very intense explosion. I. Theoretical discussion. Proc. R. Soc. Lond. A 201, 159 (1950)

    Article  ADS  MATH  Google Scholar 

  4. Taylor, G.: The formation of a blast wave by a very intense explosion. II. The atomic explosion of 1945. Proc. R. Soc. Lond. A 201, 175 (1950)

    Article  ADS  MATH  Google Scholar 

  5. von Neumann, J.: Collected Works, p. 219. Pergamon Press, Oxford (1963)

    Google Scholar 

  6. Sedov, L.: Similarity and Dimensional Methods in Mechanics, 10th edn. CRC Press, Boca Raton (1993)

    Google Scholar 

  7. Sedov, L.: Propagation of strong shock waves. J. Appl. Math. Mech. 10, 241 (1946)

    Google Scholar 

  8. Woltjer, L.: Supernova remnants. Ann. Rev. Astron. Astrophys. 10, 129 (1972)

    Article  ADS  Google Scholar 

  9. Gull, S.: A numerical model of the structure and evolution of young supernova remnants. Mon. Not. R. Astr. Soc. 161, 47 (1973)

    Article  ADS  Google Scholar 

  10. Cioffi, D.F., Mckee, C.F., Bertschinger, E.: Dynamics of radiative supernova remnants. Astrophys. J. 334, 252 (1988)

    Article  ADS  Google Scholar 

  11. Ostriker, J.P., McKee, C.F.: Astrophysical blastwaves. Rev. Mod. Phys. 60, 1 (1988)

    Article  ADS  Google Scholar 

  12. Zel’dovich, Y.B., Raizer, Y.P.: Physics of Shock Waves and High Temperature Hydrodynamic Phenomena. Dover Publications Inc, New York (2002)

    Google Scholar 

  13. Edwards, M.J., MacKinnon, A.J., Zweiback, J., Shigemori, K., Ryutov, D., Rubenchik, A.M., Keilty, K.A., Liang, E., Remington, B.A., Ditmire, T.: Investigation of ultrafast laser-driven radiative blast waves. Phys. Rev. Lett. 87, 085004 (2001)

    Article  ADS  Google Scholar 

  14. Edens, A., Ditmire, T., Hansen, J., Edwards, M., Adams, R., Rambo, P., Ruggles, L., Smith, I., Porter, J.: Study of high Mach number laser driven blast waves. Phys. Plasmas 11, 4968 (2004)

    Article  ADS  MATH  Google Scholar 

  15. Moore, A.S., Symes, D.R., Smith, R.A.: Tailored blast wave formation: developing experiments pertinent to laboratory astrophysics. Phys. Plasmas 12, 052707 (2005)

    Article  ADS  Google Scholar 

  16. Dokuchaev, V.I.: Self-similar shock solution with sustained energy injection. Astron. Astrophys. 395, 1023 (2002)

    Article  ADS  MATH  Google Scholar 

  17. Falle, S.: A numerical calculation of the effect of stellar winds on the interstellar medium. Aston. Astrophys. 43, 323 (1975)

    ADS  Google Scholar 

  18. Ghoniem, A., Kamel, M., Berger, S., Oppenheim, A.: Effect of internal heat transfer on the structure of self-similar blast waves. J. Fluid Mech. 117, 473 (1982)

    Article  ADS  MATH  Google Scholar 

  19. Abdel-Raouf, A., Gretler, W.: Quasi-similar solutions for blast waves with internal heat transfer effects. Fluid Dyn. Res. 8, 273 (1991)

    Article  ADS  Google Scholar 

  20. Steiner, H., Gretler, W.: The propagation of spherical and cylindrical shock waves in real gases. Phys. Fluids 6, 2154 (1994)

    Article  ADS  MATH  Google Scholar 

  21. VonNeumann, J., Richtmyer, R.: A method for the numerical calculation of hydrodynamic shocks. J. Appl. Phys. 21, 232 (1950)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  22. Latter, R.: Similarity solution for spherical shock wave. J. Appl. Phys. 26, 954 (1955)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  23. Brode, H.L.: Numerical solutions of spherical blast waves. J. Appl. Phys. 26, 766 (1955)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  24. Plooster, M.N.: Shock waves from line sources: numerical solutions and experimental measurements. Phys. Fluids 13, 2665 (1970)

    Article  ADS  Google Scholar 

  25. Walsh, A.M., Holloway, K.E., Habdas, P., de Bruyn, J.R.: Morphology and scaling of impact craters in granular media. Phys. Rev. Lett. 91, 104301 (2003)

    Article  ADS  Google Scholar 

  26. Metzger, P.T., Latta, R.C., Schuler, J.M., Immer, C.D.: Craters formed in granular beds by impinging jets of gas. AIP Conf. Proc. 1145, 767 (2009)

    Article  ADS  Google Scholar 

  27. Grasselli, Y., Herrmann, H.J.: Crater formation on a three dimensional granular heap. Gran. Matt. 3(4), 201 (2001)

    Article  Google Scholar 

  28. Boudet, J.F., Cassagne, J., Kellay, H.: Blast shocks in quasi-two-dimensional supersonic granular flows. Phys. Rev. Lett. 103, 224501 (2009)

    Article  ADS  Google Scholar 

  29. Jabeen, Z., Rajesh, R., Ray, P.: Universal scaling dynamics in a perturbed granular gas. Eur. Phys. Lett. 89, 34001 (2010)

    Article  ADS  Google Scholar 

  30. Pathak, S.N., Jabeen, Z., Ray, P., Rajesh, R.: Shock propagation in granular flow subjected to an external impact. Phys. Rev. E 85, 061301 (2012)

    Article  ADS  Google Scholar 

  31. Cheng, X., Xu, L., Patterson, A., Jaeger, H.M., Nagel, S.R.: Towards the zero-surface-tension limit in granular fingering instability. Nat. Phys. 4, 234 (2008)

    Article  Google Scholar 

  32. Sandnes, B., Knudsen, H.A., Måløy, K.J., Flekkøy, E.G.: Labyrinth patterns in confined granular-fluid systems. Phys. Rev. Lett. 99, 038001 (2007)

    Article  ADS  Google Scholar 

  33. Pinto, S.F., Couto, M.S., Atman, A.P.F., Alves, S.G., Bernardes, A.T., de Resende, H.F.V., Souza, E.C.: Granular fingers on jammed systems: new fluidlike patterns arising in grain–grain invasion experiments. Phys. Rev. Lett. 99, 068001 (2007)

    Article  ADS  Google Scholar 

  34. Johnsen, O., Toussaint, R., Måløy, K.J., Flekkøy, E.G.: Pattern formation during air injection into granular materials confined in a circular Hele-Shaw cell. Phys. Rev. E 74, 011301 (2006)

    Article  ADS  Google Scholar 

  35. Huang, H., Zhang, F., Callahan, P.: Granular fingering in fluid injection into dense granular media in a Hele-Shaw cell. Phys. Rev. Lett. 108, 258001 (2012)

    Article  ADS  Google Scholar 

  36. Joy, J.P., Pathak, S.N., Dibyendu, D., Rajesh, R.: Shock propagation in locally driven granular systems. Phys. Rev. E 96, 032908 (2017)

    Article  ADS  Google Scholar 

  37. Barbier, M., Villamaina, D., Trizac, E.: Blast dynamics in a dissipative gas. Phys. Rev. Lett. 115, 214301 (2015)

    Article  ADS  Google Scholar 

  38. Barbier, M., Villamaina, D., Trizac, E.: Microscopic origin of self-similarity in granular blast waves. Phys. Fluids 28, 083302 (2016)

    Article  ADS  Google Scholar 

  39. Antal, T., Krapivsky, P.L., Redner, S.: Exciting hard spheres. Phys. Rev. E 78, 030301 (2008)

    Article  ADS  Google Scholar 

  40. Joy, J.P., Pathak, S.N., Rajesh, R.: Shock propagation following an intense explosion: comparison between hydrodynamics and simulations. J. Stat. Phys. 182, 34 (2021)

  41. Ganapa, S., Chakraborti, S., Dhar, A.: The Taylor-von Neumann–Sedov blast-wave solution: comparisons with microscopic simulations of a one dimensional gas, arXiv preprint arXiv:2010.15868 (2020)

  42. Rapaport, D.C.: The art of Molecular Dynamics Simulations. Cambridge University Press, Cambridge (2004)

    Book  MATH  Google Scholar 

  43. Isobe, M.: Hard sphere simulation in statistical physics—methodologies and applications. Mol. Simul. 42, 1317 (2016)

    Article  Google Scholar 

  44. Landau, L., Lifshitz, E.: Course of Theoretical Physics-Fluid Mechanics. Butterwörth-Heinemann, Oxford (1987)

    Google Scholar 

  45. McCoy, B.M.: Advanced Statistical Mechanics. Oxford Science Publications, Oxford (2009)

    Book  MATH  Google Scholar 

  46. Chakraborti, S., Ganapa, S., Krapivsky, P.L., Dhar, A.: 46. Blast in the one-dimensional cold gas: From Newton to Euler and Navier–Stokes, arXiv preprint arXiv:2102.08321 (2021)

Download references

Acknowledgements

The simulations were carried out on the supercomputer Nandadevi at The Institute of Mathematical Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Rajesh.

Additional information

Communicated by Abhishek Dhar.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Joy, J.P., Rajesh, R. Shock Propagation in the Hard Sphere Gas in Two Dimensions: Comparison Between Simulations and Hydrodynamics. J Stat Phys 184, 3 (2021). https://doi.org/10.1007/s10955-021-02790-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10955-021-02790-6

Keywords

Navigation