Skip to main content
Log in

Effect of vernalization (Vrn) genes on root angles of bread wheat lines carrying rye translocation

  • Original Paper
  • Published:
Cereal Research Communications Aims and scope Submit manuscript

Abstract

Rye translocation is a significant genetic resource used in the development of drought-tolerant wheat varieties. The effects of vernalization genes on root angles in the reciprocal recombinant inbred population carrying rye translocation were investigated in the study. Three hundred and five bread wheat lines obtained from reciprocal recombinant inbred line population, which were found to carry rye translocation by sodium dodecyl sulfate polyacrylamide gel electrophoresis and PCR analysis, were molecularly screened for Vrn genes, and their Vrn gene combinations were determined. The seeds of the lines were germinated in petri dishes in three repetitions, and the growth angles of the roots in the early period were determined by image processing technique. The mean root angles of the lines in reciprocal populations varied between 61° and 249°. The effect of Vrn allele combinations on root angles is statistically significant. Lines carrying the dominant Vrn-D1 allele affecting the spring growth character and the gene combinations with the recessive vrn-B1 allele affecting the winter growth character generally have narrower root angles. Similarly, the dominant Vrn-A1b allele was found to be particularly effective on the narrower root angle alone. In the Tahirova-2000/Tosunbey population, the allele combination associated with the narrowest root angle was Vrn-B1 x Vrn-D1 x Vrn-A1b. The results showed that the reciprocal population carrying the 1BL.1RS rye translocation showed a phenotypic variation for root angles, and Vrn genes affected the root angles. The developed population can be used, especially in drought studies, to develop elite material carrying the rye translocation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  • Alahmad S, El Hassouni K, Bassi FM, Dinglasan E, Youssef C, Quarry G, Aksoy A, Mazzucotelli E, Juhász A, Able JA, Christopher J, Voss-Fels KP, Hickey LT (2019) A major root architecture QTL responding to water limitation in durum wheat. Front Plant Sci 10:10–436

    Article  Google Scholar 

  • Anonymous (2019). https://muhendistan.com/bitkiler-icin-kullanilan-goruntu-isleme-yazilimlari (Erişim Tarihi: 11.01.2020)

  • Atkinson JA, Wingen LU, Griffiths M, Pound MP, Gaju O, Foulkes MJ, Le Gouis J, Griffiths S, Bennett MJ, King J (2015) Phenotyping pipeline reveals major seedling root growth QTL in hexaploid wheat. J Exp Bot 66(8):2283–2292

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bezant J, Laurie D, Pratchett N, Chojecki J, Kearsey M (1996) “Marker regression mapping of QTL controlling flowering time ve plant height in a spring barley (Hordeum vulgare L.) cross. Heredity 77:64–73

    Article  CAS  Google Scholar 

  • Bonser AM, Lynch J, Snapp S (1996) Effect of phosphorus deficiency on growth angle of basal roots in Phaseolus vulgaris. New Phytol 132:281–288

    Article  CAS  PubMed  Google Scholar 

  • Chen Y, Carver B, Wang S, Cao S, Yan L (2010) Genetic regulation of developmental phases in winter wheat. Mol Breed 26:573–582

    Article  Google Scholar 

  • Chen Y, Djalovic I, Rengel Z (2015). Phenotyping for Root Traits Phenomics in crop plants: trends, options ve limitations. New Delhi: Springer India pp 101–128

  • Chen Y, Palta AJ, Prasad V, Siddique HM (2020) Phenotypic variability in bread wheat root systems at the early vegetative stage. Plant Biol 20(1):123–134

    CAS  Google Scholar 

  • De Dorlodot S, Forster B, Pages L, Price A, Tuberosa R, Draye X (2007) Root system architecture: opportunities ve constraints for genetic improvement of crops. Trends Plant Sci 12(10):474–481

    Article  PubMed  CAS  Google Scholar 

  • Deng W, Casao MC, Wang P, Sato K, Hayes PM, Finnegan EJ, Trevaskis B (2015) Direct links between the vernalization response ve other key traits of cereal crops. Nat Commun 6:58–82

    Google Scholar 

  • Dreisigacker S, Sukumaran S, Guzmán C, He X, Bonnett D, Crossa J (2016) Molecular marker-based selection tools in spring bread wheat improvement: CIMMYT experience ve prospects. Mol Breed Sustain Crop Improv 11:421–474

    Article  Google Scholar 

  • Efremova TT, Chumanova EV, Trubacheeva NV, Arbuzova VS, Belan IA, Pershina LA (2016) Prevalence of VRN1 locus alleles among spring common wheat cultivars cultivated in Western Siberia. Russ J Genet 52(2):146–153

    Article  CAS  Google Scholar 

  • Ehdaie B, Whitkus RW, Waines JG (2003) Root biomass, water-use efficiency performance of wheat-Rye translocations of chromosomes 1 ve 2 in Spring Bread Wheat ‘Pavon.’ Crop Sci 43:710–717

    Google Scholar 

  • El Hassouni K, Alahmad S, Belkadi B, Filali-Maltouf A, Hickey LT, Bassi FM (2018) Root system architecture ve its association with yield under different water regimes in Durum wheat. Crop Sci 58:2331–2346

    Article  Google Scholar 

  • Faheem M, Mahmood T, Shabbir G, Akhtar N, Kazi AG, Kazi AM (2015) Assessment of D-genome based genetic diversity in drought tolerant wheat germplasm. Int J Agric Biol 17:791–796

    Article  CAS  Google Scholar 

  • Fang J, Ma L, Chen Y (2017) Color analysis of soybean leaves based on computer vision. 2nd WRI World Congr Softw Eng 1:12–20

  • Feldman M, Levy AA (2015) Origin ve evolution of wheat ve related Triticeae species. Alien Introgression in Wheat. Springer pp 21–76

  • Fu D, Szucs P, Yan L, Helguera M, Skinner JS, Von Zitzewitz J, Hayes PM, Dubcovsky J (2005) Large deletions within the first intron in VRN-1 are associated with spring growth habit in barley ve wheat. Mol Genetics Ve Genomics 273(1):54–65

    Article  CAS  Google Scholar 

  • Gianibelli MCM, Echaide OR, Larroque JM, Carrillo J, Dubcovsky, (2002) Biochemical and molecular characterization of Glu-1 loci Argentinean wheat cultivars. Euphytica 128:61–73

    Article  CAS  Google Scholar 

  • Goncharov NP (2004) Response to vernalization in wheat: its quantitative or qualitative nature. Cereal Res Comm 32:323–330

    Article  CAS  Google Scholar 

  • Gorash A, Armoniene R, Liatukas Ž, Brazauskas G (2017) The relationship among freezing tolerance, vernalization requirement, Ppd alleles ve winter hardiness in European wheat cultivars. J Agric Sci 1–18

  • Gosal SS, Wani SH, Kang MS (2009) Biotechnology ve drought tolerance. J Crop Improv 23:19–54

    Article  CAS  Google Scholar 

  • Gregory PJ, Bengough AG, Grinev D, Schmidt S, Thomas WBT, Wojciechowski T, Young IM (2009) Root phenomics of crops: opportunities ve challenges. Funct Plant Biol 36(11):922–929

    Article  PubMed  Google Scholar 

  • Grzesiak MT, Hordynska N, Maksymowicz A, Grzesiak S, Szechynska-Hebda M (2019) Variation among spring wheat (Triticum aestivum L.) genotypes in response to the drought stress, ii—root system structure. Plants (basel) 8(12):584

    Article  CAS  PubMed Central  Google Scholar 

  • Hamada A, Nitta M, Nasuda S, Kato K, Fujita M, Matsunaka H (2012) Novel QTLs for growth angle of seminal roots in wheat (Triticum aestivum L.). Plant Soil 354:395–405

    Article  CAS  Google Scholar 

  • Hickey LT, German SE, Pereya SA, Diaz JE, Ziems LA, Fowler RA (2017) Speed breeding for multiple disease resistance in barley. Euphytica. https://doi.org/10.1007/s10681-016-1803-2

    Article  Google Scholar 

  • Iqbal M, Navabi A, Yang RC, Salmon DF, Spaner D (2007) The effect of vernalization genes on earliness ve related agronomic traits of spring wheat in northern growing regions. Crop Sci 47(3):1031–1039

    Article  Google Scholar 

  • Karki D, Wyant W, Berzonsky WA, Glover KD (2014) Investigating physiological ve morphological mechanisms of drought tolerance in wheat (Triticum aestivum L.) lines with 1RS translocation. Am J Plant Sci. https://doi.org/10.4236/ajps.2014.513207

    Article  Google Scholar 

  • Kumar V, Makkar HPS, Becker K (2011) Detoxified Jatropha curcas kernel meal as a dietary protein source: Growth performance, nutrient utilization ve digestive enzymes in common carp (Cyprinus carpio L.) fingerlings. Aquacult Nutr 17(3):313–326

    Article  CAS  Google Scholar 

  • Liao H, Yan X, Rubio G, Beebe SE, Blair MW, Lynch JP (2004) Genetic mapping of basal root gravitropism ve phosphorus acquisition efficiency in common bean. Funct Plant Biol 31(10):959–970

    Article  CAS  PubMed  Google Scholar 

  • Lynch J (1995) Root architecture ve plant productivity. Plant Physiol 109(1):7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Manschadi A, Hammer G, Christopher T, Devoil P (2008) Genotypic variation in seedling root architectural traits ve implications for drought adaptation in wheat Triticum aestivum L. Plant Soil 303:115–129

    Article  CAS  Google Scholar 

  • Marcinska I, Czyczyło-Mysza I, Skrzypek E, Filek M, Grzesiak S, Grzesiak MT, Janowiak F, Hura T, Dziurka M, Dziurka K, Nowakowska A, Quarrie SA (2013) Impact of osmotic stress physiological ve biochemical characteristics in drought-susceptible ve drought-resistant wheat genotypes. Acta Physiol Plant 35:451–461

    Article  CAS  Google Scholar 

  • Masci S, D’Ovidio R, Lafiandra D, Kasarda DD (2000) A 1Bcoded low-molecular-weight glutenin subunits associated with quality in durum wheats shows strong similarity to a subunit present in some bread wheat cultivars. Theor Appl Genet 100:396–400

    Article  CAS  Google Scholar 

  • Molnár I, Kubaláková M, Šimková H, Farkas A, Cseh A, Megyeri M, Vrána J, Molnár-Láng M, Doležel J (2014) Flow cytometric chromosome sorting from diploid progenitors of bread wheat, T. urartu, Ae. speltoides veAe. Tauschii Theor Appl Genet 127:1091–1104

    Article  PubMed  Google Scholar 

  • Narayanan S, Mohan A, Gill KS, Prasad PV (2014) Variability of root traits in spring wheat germplasm. PLoS ONE 9(6):e100317

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Patterson HD, Hunter EA (1983) The efficiency of incomplete block designs in national list and recommended list cereal variety trials. J Agric Sci 101:427–433

    Article  Google Scholar 

  • Petcu E, Ciuca M, Cristina D, Lazar C, Marinciu C, Barbu S (2019) The use of growth angle of seminal roots as traits to improve the drought tolerance in winetr wheat (Triticum aestivum L.). Sci Papers Series Agron 2:104–108

    Google Scholar 

  • Pouliquen Y, Forterre S (2017) A new scenario for gravity detection in plants: the position sensor hypothesis. Phys Biol 14(3):035005

    Article  CAS  PubMed  Google Scholar 

  • Qi L, Friebe B, Zhang P, Gill B (2007) Homoeologous recombination, chromosome engineering ve crop improvement. Chromosome Res 1:3–19

    Article  CAS  Google Scholar 

  • Ren TH, Chen F, Yan BJ, Zhang HQ, Ren ZL (2012) Genetic diversity of wheat–rye 1BL.1RStranslocation lines derived from different wheat ve rye sources. Euphytica 183:133–146

    Article  Google Scholar 

  • Ren GR, Hauser F, Rewitz KF, Kondo S, Engelbrecht AF, Didriksen AK, Schjøtt SR, Sembach FE, Li S, Søgaard KC, Søndergaard L, Grimmelikhuijzen CJ (2015) CCHamide-2 ıs an orexigenic brain-gut peptide in drosophila. PLoS ONE 10(7):133

    Google Scholar 

  • Richard M, Quijano RR, Bezzate S, Bordon-Pallier F, Gaillardin C (2001) Tagging morphogenetic genes by insertional mutagenesis in the yeast Yarrowia lipolytica. J Bacteriol 183:3098–3107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Richard CA, Hickey LT, Fletcher S, Jennings R, Chenu K, Christopher JT (2015) Highthroughput phenotyping of seminal root traits in wheat. Plant Method 11(1):13

    Article  Google Scholar 

  • Sharma S, Bhat PR, Ehdaie B, Close TJ, Lukaszewski AJ, Waines JG (2009) Integrated genetic map and genetic analysis of a region associated with root traits on the short arm of rye chromosome 1 in bread wheat. Theor Appl Genet 119:783–793

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shcherban AB, Salina EA (2017) Evolution of VRN-1 homoeologous loci in allopolyploids of Triticum ve their diploid precursors. BMC Plant Biolog 17(1):188–188

    Article  CAS  Google Scholar 

  • Shewry PR, Hey SJ (2015) The contribution of wheat to human diet ve health. Food Ve Energy Securit 4(3):178–202

    Article  Google Scholar 

  • Shindo C, Sasakuma T (2002) Genes responding to vernalization in hexaploid wheat. TAG Theor Appl Genetics 104(6–7):1003–1010

    Article  CAS  Google Scholar 

  • Stelmakh AF, Avsenin VI, Voronin AN (1987) Catalog of spring common cultivars with respect to genotypes of the Vrn locus system. BSGI, Odessa

  • Tunca ZŞ, Topal A, Karaduman Y (2018) Buğdaya çavdar kromozom parçaciklarinin aktarilmasi. J Bahri Dagdas Crop Res 7(2):55–65

    Google Scholar 

  • Villareal RL, Rajaram S, Mujeeb-Kazi A, Del Toro E (1991) The effects of chromosome 1B/1R translocation on yield potential of certain spring wheats (Triticum aestivum L.). Plant Breed 106:77–81

    Article  Google Scholar 

  • Voss-Fels KP, Robinson H, Mudge SR, Richard C, Newman S, Wittkop B, Stahl A, Friedt W, Frisch M, Gabur I, Miller-Cooper A, Campbell BC (2017). Vernalization1 modulates root system architecture in wheat ve barley. Mol Plant 11

  • Wang S, Luo H, Zhang J, Zhang Y, He Z, Wang S (2014) Alkali-induced changes in functional properties ve in vitro digestibility of wheat starch: the role of surface proteins ve lipids. J Agric Ve Food Chem 62:3636–3643

    Article  CAS  Google Scholar 

  • Whittal A, Kaviani M, Graf R, Humphreys G, Navabi A (2018) Allelic variation of vernalization ve photoperiod response genes in a diverse set of North American high latitude winter wheat genotypes. PLoS ONE 13(12):e0209543

    Article  Google Scholar 

  • Wilhelm EP, Boulton MI, Al-Kaff N, Balfourier F, Bordes J, Greenlve AJ (2013) Rht-1vePpd-D1 asso-ciations with height, GA sensitivity days to heading in a worldwide bread wheat collection. TheorAppl Genet 126:2233–2243

    Article  CAS  Google Scholar 

  • Yamamota M, Mukai Y (2005) High-resolution physical mapping of the secalin-1 locus of rye on extended DNA Fibers. Cytogenet Genome Res 109:79–82

    Article  CAS  Google Scholar 

  • Yan L, Loukojanov A, Tranquillo G, Helguera M, Fahima T, Dubcovsky J (2003) Positional cloning of vernalization gene VRN1.Proc. Natl Acad Sci USA 100:6263–6268

    Article  CAS  Google Scholar 

  • Yang E, Li G, Li L, Zhang Z, Yang W, Peng Y (2016) Characterisation of stripe rust resistance genes in the wheat cultivar Chuanmai45. Int J Mol Sci 17:601

    Article  PubMed Central  CAS  Google Scholar 

  • Zhang XK, Xia XC, Xiao YG, Zhang Y, He ZH (2008) Allelic variation at the vernalization genes Vrn-A1, Vrn-B1, Vrn-D1 ve Vrn-B3 in Chinese common wheat cultivars ve their association with growth habit. Crop Sci 48:458–470

    Article  CAS  Google Scholar 

  • Zhang B, Xianguo W, Xiaolong W, Li M, Zhonghua W, Xiaoke Z (2018) Molecular characterization of a novel vernalization Vrn-B1dve its effect on heading time in Chinese wheat (Triticum aestivum L.) lverace Hongchunmai. Mol Breed 38:127

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was carried out within the scope of the project coded 02-D-18 supported by the Scientific Research Projects Commission of Karamanoğlu Mehmetbey University.

Funding

The authors have no relevant financial or non-financial interests to disclose.

Author information

Authors and Affiliations

Authors

Contributions

The authors declare that they have contributed equally to the article.

Corresponding author

Correspondence to Tuğba Güleç.

Ethics declarations

Conflict of interest

The article authors declare that there is no conflict of interest between them.

Ethical approval

Ethical approval is not required for this research.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Güleç, T., Sönmez, M.E., Demir, B. et al. Effect of vernalization (Vrn) genes on root angles of bread wheat lines carrying rye translocation. CEREAL RESEARCH COMMUNICATIONS 50, 367–378 (2022). https://doi.org/10.1007/s42976-021-00188-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42976-021-00188-4

Keywords

Navigation