Skip to main content
Log in

Conversion and Smoothing of MHD Shocks in Atmospheres with Open and Closed Magnetic Field and Neutral Points

  • Published:
Solar Physics Aims and scope Submit manuscript

Abstract

Planar acoustically dominated magnetohydrodynamic waves are initiated at the high-\(\beta\) base of a simulated 2D isothermal stratified atmosphere with potential magnetic field exhibiting both open and closed field regions as well as neutral points. They shock on their way upward toward the Alfvén–acoustic equipartition surface \(a=c\), where \(a\) and \(c\) are the Alfvén and sound speeds, respectively. Expanding on recent 1.5D findings that such shocks mode-convert to fast shocks and slow smoothed waves on passing through \(a=c\), we explore the implications for these more complex magnetic geometries. It is found that the 1.5D behaviour carries over to the more complex case, with the fast shocks strongly attracted to neutral points, which are disrupted producing extensive fine structure. It is also observed that shocks moving in the opposite direction, from \(a>c\) to \(a< c\), split into fast and slow components too, and that again it is the slow component that is smoothed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13

Similar content being viewed by others

Notes

  1. However, as pointed out by Whitham (1974), Section 8.8, this is an artefact of linearization. With shocks already present, the wave fronts speed up and typically push the rays apart, thereby inhibiting caustic formation. Nevertheless, their appearance in linearized ray-tracing certainly suggests the development of nonlinearity in reality.

  2. Similar ray calculations were carried out by Tarr and Linton (2019) in 3D, including the Alfvén wave which we have neglected.

  3. A stiffness-switching scheme with projection is used to maintain \(\mathcal{D}=0\) to high order.

References

  • Arber, T.D., Longbottom, A.W., Gerrard, C.L., Milne, A.M.: 2001, A staggered grid, Lagrangian-Eulerian remap code for 3-D MHD simulations. J. Comput. Phys. 171, 151. DOI. ADS.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Bazer, J., Ericson, W.B.: 1959, Hydromagnetic shocks. Astrophys. J. 129, 758. DOI. ADS.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Braun, D.C., Duvall, T.L. Jr., Labonte, B.J.: 1988, The absorption of high-degree p-mode oscillations in and around sunspots. Astrophys. J. 335, 1015. DOI. ADS.

    Article  ADS  Google Scholar 

  • Cally, P.S., Crouch, A.D., Braun, D.C.: 2003, Probing sunspot magnetic fields with p-mode absorption and phase shift data. Mon. Not. Roy. Astron. Soc. 346, 381. DOI. ADS.

    Article  ADS  Google Scholar 

  • Cally, P.S., Hansen, S.C.: 2011, Benchmarking fast-to-Alfvén mode conversion in a cold magnetohydrodynamic plasma. Astrophys. J. 738, 119. DOI. ADS.

    Article  ADS  Google Scholar 

  • Cally, P.S., Moradi, H.: 2013, Seismology of the wounded Sun. Mon. Not. Roy. Astron. Soc. 435, 2589. DOI. ADS.

    Article  ADS  Google Scholar 

  • Carlsson, M., De Pontieu, B., Hansteen, V.H.: 2019, New view of the solar chromosphere. Annu. Rev. Astron. Astrophys. 57, 189. DOI. ADS.

    Article  ADS  Google Scholar 

  • Hansen, S.C., Cally, P.S.: 2009, An exact test of generalised ray theory in local helioseismology. Solar Phys. 255, 193. DOI. ADS.

    Article  ADS  Google Scholar 

  • Khomenko, E., Cally, P.S.: 2012, Numerical simulations of conversion to Alfvén waves in sunspots. Astrophys. J. 746, 68. DOI. ADS.

    Article  ADS  Google Scholar 

  • Khomenko, E., Calvo Santamaria, I.: 2013, Magnetohydrodynamic waves driven by p-modes. J. Phys. Conf. Ser. 440, 012048.

    Article  Google Scholar 

  • Khomenko, E., Collados, M., Díaz, A., Vitas, N.: 2014, Fluid description of multi-component solar partially ionized plasma. Phys. Plasmas 21(9), 092901. DOI. ADS.

    Article  ADS  Google Scholar 

  • McLaughlin, J.A., Hood, A.W.: 2004, MHD wave propagation in the neighbourhood of a two-dimensional null point. Astron. Astrophys. 420, 1129. DOI. ADS.

    Article  ADS  Google Scholar 

  • McLaughlin, J.A., Hood, A.W.: 2006, MHD mode coupling in the neighbourhood of a 2D null point. Astron. Astrophys. 459, 641. DOI. ADS.

    Article  ADS  Google Scholar 

  • McLaughlin, J.A., Hood, A.W., de Moortel, I.: 2011, Review article: MHD wave propagation near coronal null points of magnetic fields. Space Sci. Rev. 158, 205. DOI. ADS.

    Article  ADS  Google Scholar 

  • McLaughlin, J.A., De Moortel, I., Hood, A.W., Brady, C.S.: 2009, Nonlinear fast magnetoacoustic wave propagation in the neighbourhood of a 2D magnetic X-point: oscillatory reconnection. Astron. Astrophys. 493(1), 227. DOI. ADS.

    Article  ADS  Google Scholar 

  • Nakariakov, V.M., Melnikov, V.F.: 2009, Quasi-periodic pulsations in solar flares. Space Sci. Rev. 149, 119. DOI. ADS.

    Article  ADS  Google Scholar 

  • Núñez, M.: 2017, Geometry and dynamics of fast magnetosonic wavefronts near magnetic null points. Commun. Nonlinear Sci. Numer. Simul. 43, 158. DOI. ADS.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Núñez, M.: 2019, Smoothing of shocks in wave conversion of magnetosonic waves. Europhys. Lett. 125, 44002. DOI. ADS.

    Article  ADS  Google Scholar 

  • Nutto, C., Steiner, O., Roth, M.: 2010, Magneto-acoustic wave propagation and mode conversion in a magnetic solar atmosphere: comparing results from the CO5BOLD code with ray theory. Astron. Nachr. 331, 915. DOI. ADS.

    Article  ADS  Google Scholar 

  • Nutto, C., Steiner, O., Roth, M.: 2012, Revealing the nature of magnetic shadows with numerical 3D-MHD simulations. Astron. Astrophys. 542, L30. DOI. ADS.

    Article  ADS  Google Scholar 

  • Pennicott, J.D., Cally, P.S.: 2019, Smoothing of MHD shocks in mode conversion. Astrophys. J. Lett. 881(1), L21. DOI.

    Article  ADS  Google Scholar 

  • Priest, E.R.: 1982, Solar Magnetohydrodynamics, Reidel, Dordrecht.

    Book  Google Scholar 

  • Riedl, J.M., Van Doorsselaere, T., Calvo Santamaria, I.: 2019, Wave modes excited by photospheric p-modes and mode conversion in a multi-loop system. Astron. Astrophys. 625, A144. DOI. ADS.

    Article  Google Scholar 

  • Rijs, C., Rajaguru, S.P., Przybylski, D., Moradi, H., Cally, P.S., Shelyag, S.: 2016, 3D simulations of realistic power halos in magnetohydrostatic sunspot atmospheres: linking theory and observation. Astrophys. J. 817, 45. DOI. ADS.

    Article  ADS  Google Scholar 

  • Schunker, H., Cally, P.S.: 2006, Magnetic field inclination and atmospheric oscillations above solar active regions. Mon. Not. Roy. Astron. Soc. 372, 551. DOI. ADS.

    Article  ADS  Google Scholar 

  • Snow, B., Hillier, A.: 2020, Mode conversion of two-fluid shocks in a partially-ionised, isothermal, stratified atmosphere. Astron. Astrophys. 637, A97. DOI. ADS.

    Article  ADS  Google Scholar 

  • Tarr, L.A., Linton, M.: 2019, The formation and dissipation of current sheets and shocks due to compressive waves in a stratified atmosphere containing a magnetic null. Astrophys. J. 879(2), 127. DOI. ADS.

    Article  ADS  Google Scholar 

  • Threlfall, J., Parnell, C.E., De Moortel, I., McClements, K.G., Arber, T.D.: 2012, Nonlinear wave propagation and reconnection at magnetic X-points in the Hall MHD regime. Astron. Astrophys. 544, A24. DOI. ADS.

    Article  Google Scholar 

  • Tracy, E.R., Kaufman, A.N., Brizard, A.J.: 2003, Ray-based methods in multidimensional linear wave conversion. Phys. Plasmas 10, 2147. DOI. ADS.

    Article  ADS  Google Scholar 

  • Tracy, E.R., Brizard, A.J., Johnston, D., Kaufman, A.N., Richardson, A.S., Zobin, N.: 2012, Rooms with a view: a novel approach to iterated multidimensional wave conversion. Commun. Nonlinear Sci. Numer. Simul. 17, 2161. DOI. ADS.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Tracy, E.R., Brizard, A.J., Richardson, A.S., Kaufman, A.N.: 2014, Ray Tracing and Beyond, Cambridge University Press, Cambridge. ISBN 978-0521768061. ADS.

    Book  Google Scholar 

  • Van Doorsselaere, T., Kupriyanova, E.G., Yuan, D.: 2016, Quasi-periodic pulsations in solar and stellar flares: an overview of recent results (invited review). Solar Phys. 291(11), 3143. DOI. ADS.

    Article  ADS  Google Scholar 

  • Weinberg, S.: 1962, Eikonal method in magnetohydrodynamics. Phys. Rev. 126, 1899. DOI. ADS.

    Article  ADS  MATH  Google Scholar 

  • Whitham, G.B.: 1974, Linear and Nonlinear Waves, Wiley, New York.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jamon D. Pennicott.

Ethics declarations

Disclosure of Potential Conflicts of Interest

The authors declare that they have no conflicts of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below are the links to the electronic supplementary material.

(MP4 15.7 MB)

(MP4 15.3 MB)

(MP4 15.3 MB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pennicott, J.D., Cally, P.S. Conversion and Smoothing of MHD Shocks in Atmospheres with Open and Closed Magnetic Field and Neutral Points. Sol Phys 296, 97 (2021). https://doi.org/10.1007/s11207-021-01829-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11207-021-01829-x

Keywords

Navigation