Skip to main content
Log in

Mixed Properties of Slow Magnetoacoustic and Entropy Waves in a Plasma with Heating/Cooling Misbalance

  • Published:
Solar Physics Aims and scope Submit manuscript

Abstract

The processes of coronal plasma heating and cooling were previously shown to significantly affect the dynamics of slow magnetoacoustic (MA) waves, causing amplification or attenuation, and also dispersion. However, the entropy mode is also excited in such a thermodynamically active plasma and is affected by the heating/cooling misbalance too. This mode is usually associated with the phenomenon of coronal rain and formation of prominences. Unlike adiabatic plasmas, the properties and evolution of slow MA and entropy waves in continuously heated and cooling plasmas get mixed. Different regimes of the misbalance lead to a variety of scenarios for the initial perturbation to evolve. In order to describe properties and evolution of slow MA and entropy waves in various regimes of the misbalance, we obtained an exact analytical solution of the linear evolutionary equation. Using the characteristic timescales and the obtained exact solution, we identified regimes with qualitatively different behaviour of slow MA and entropy modes. For some of those regimes, the spatio-temporal evolution of the initial Gaussian pulse is shown. In particular, it is shown that slow MA modes may have a range of non-propagating harmonics. In this regime, perturbations caused by slow MA and entropy modes in a low-\(\beta \) plasma would look identical in observations, as non-propagating disturbances of the plasma density (and temperature) either growing or decaying with time. We also showed that the partition of the initial energy between slow MA and entropy modes depends on the properties of the heating and cooling processes involved. The exact analytical solution obtained could be further applied to the interpretation of observations and results of numerical modelling of slow MA waves in the corona and the formation and evolution of coronal rain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  • Afanasyev, A.N., Nakariakov, V.M.: 2015, Nonlinear slow magnetoacoustic waves in coronal plasma structures. Astron. Astrophys. 573, A32. DOI. ADS.

    Article  ADS  Google Scholar 

  • Andries, J., Arregui, I., Goossens, M.: 2005, Determination of the coronal density stratification from the observation of harmonic coronal loop oscillations. Astrophys. J. Lett. 624, L57. DOI. ADS.

    Article  ADS  Google Scholar 

  • Antolin, P.: 2020, Thermal instability and non-equilibrium in solar coronal loops: from coronal rain to long-period intensity pulsations. Plasma Phys. Control. Fusion 62, 014016. DOI. ADS.

    Article  ADS  Google Scholar 

  • Antolin, P., Shibata, K., Vissers, G.: 2010, Coronal rain as a marker for coronal heating mechanisms. Astrophys. J. 716, 154. DOI. ADS.

    Article  ADS  Google Scholar 

  • Banerjee, D., Gupta, G.R., Teriaca, L.: 2011, Propagating MHD waves in coronal holes. Space Sci. Rev. 158, 267. DOI. ADS.

    Article  ADS  Google Scholar 

  • Banerjee, D., Krishna Prasad, S.: 2016, MHD waves in coronal holes. In: Keiling, A., Lee, D.-H., Nakariakov, V. (eds.) Low-Frequency Waves in Space Plasmas, Geophys. Mono. Ser. 216, 419. DOI. ADS.

    Chapter  Google Scholar 

  • Botha, G.J.J., Arber, T.D., Nakariakov, V.M., Zhugzhda, Y.D.: 2011, Chromospheric resonances above sunspot umbrae. Astrophys. J. 728, 84. DOI. ADS.

    Article  ADS  Google Scholar 

  • Chin, R., Verwichte, E., Rowlands, G., Nakariakov, V.M.: 2010, Self-organization of magnetoacoustic waves in a thermally unstable environment. Phys. Plasmas 17, 032107. DOI. ADS.

    Article  ADS  Google Scholar 

  • Claes, N., Keppens, R.: 2019, Thermal stability of magnetohydrodynamic modes in homogeneous plasmas. Astron. Astrophys. 624, A96. DOI. ADS.

    Article  ADS  Google Scholar 

  • De Moortel, I.: 2009, Longitudinal waves in coronal loops. Space Sci. Rev. 149, 65. DOI. ADS.

    Article  ADS  Google Scholar 

  • De Moortel, I., Hood, A.W.: 2003, The damping of slow MHD waves in solar coronal magnetic fields. Astron. Astrophys. 408, 755. DOI. ADS.

    Article  ADS  Google Scholar 

  • De Moortel, I., Hood, A.W.: 2004, The damping of slow MHD waves in solar coronal magnetic fields. II. The effect of gravitational stratification and field line divergence. Astron. Astrophys. 415, 705. DOI. ADS.

    Article  ADS  Google Scholar 

  • Duckenfield, T.J., Kolotkov, D.Y., Nakariakov, V.M.: 2021, The effect of the magnetic field on the damping of slow waves in the solar corona. Astron. Astrophys. 646, A155. DOI. ADS.

    Article  ADS  Google Scholar 

  • Fang, X., Xia, C., Keppens, R.: 2013, Multidimensional modeling of coronal rain dynamics. Astrophys. J. Lett. 771, L29. DOI. ADS.

    Article  ADS  Google Scholar 

  • Field, G.B.: 1965, Thermal instability. Astrophys. J. 142, 531. DOI. ADS.

    Article  ADS  Google Scholar 

  • Goossens, M.L., Arregui, I., Van Doorsselaere, T.: 2019, Mixed properties of MHD waves in non-uniform plasmas. Front. Astron. Space Sci. 6, 20. DOI. ADS.

    Article  ADS  Google Scholar 

  • Heyvaerts, J.: 1974, The thermal instability in a magnetohydrodynamic medium. Astron. Astrophys. 37, 65. ADS.

    ADS  Google Scholar 

  • Kaneko, T., Yokoyama, T.: 2017, Reconnection-condensation model for solar prominence formation. Astrophys. J. 845, 12. DOI. ADS.

    Article  ADS  Google Scholar 

  • Kohutova, P., Verwichte, E.: 2017, Dynamics of plasma condensations in a gravitationally stratified coronal loop. Astron. Astrophys. 602, A23. DOI. ADS.

    Article  ADS  Google Scholar 

  • Kohutova, P., Antolin, P., Popovas, A., Szydlarski, M., Hansteen, V.H.: 2020, Self-consistent 3D radiative magnetohydrodynamic simulations of coronal rain formation and evolution. Astron. Astrophys. 639, A20. DOI. ADS.

    Article  ADS  Google Scholar 

  • Kolotkov, D.Y., Duckenfield, T.J., Nakariakov, V.M.: 2020, Seismological constraints on the solar coronal heating function. Astron. Astrophys. 644, A33. DOI. ADS.

    Article  ADS  Google Scholar 

  • Kolotkov, D.Y., Nakariakov, V.M., Zavershinskii, D.I.: 2019, Damping of slow magnetoacoustic oscillations by the misbalance between heating and cooling processes in the solar corona. Astron. Astrophys. 628, A133. DOI. ADS.

    Article  ADS  Google Scholar 

  • Krishna Prasad, S., Banerjee, D., Van Doorsselaere, T.: 2014, Frequency-dependent damping in propagating slow magneto-acoustic waves. Astrophys. J. 789, 118. DOI. ADS.

    Article  ADS  Google Scholar 

  • Krishna Prasad, S., Jess, D.B., Van Doorsselaere, T.: 2019, The temperature-dependent damping of propagating slow magnetoacoustic waves. Front. Astron. Space Sci. 6, 57. DOI. ADS.

    Article  ADS  Google Scholar 

  • Krishna Prasad, S., Raes, J.O., Van Doorsselaere, T., Magyar, N., Jess, D.B.: 2018, The polytropic index of solar coronal plasma in sunspot fan loops and its temperature dependence. Astrophys. J. 868, 149. DOI. ADS.

    Article  ADS  Google Scholar 

  • Kupriyanova, E., Kolotkov, D., Nakariakov, V., Kaufman, A.: 2020, Quasi-periodic pulsations in solar and stellar flares. Review. J. Solar-Terr. Phys. 6, 3. DOI. ADS.

    Article  ADS  Google Scholar 

  • Luna-Cardozo, M., Verth, G., Erdélyi, R.: 2012, Longitudinal oscillations in density stratified and expanding solar waveguides. Astrophys. J. 748, 110. DOI. ADS.

    Article  ADS  Google Scholar 

  • Mandal, S., Magyar, N., Yuan, D., Van Doorsselaere, T., Banerjee, D.: 2016, Forward modeling of propagating slow waves in coronal loops and their frequency-dependent damping. Astrophys. J. 820, 13. DOI. ADS.

    Article  ADS  Google Scholar 

  • McEwan, M.P., Donnelly, G.R., Díaz, A.J., Roberts, B.: 2006, On the period ratio P1/2P2 in the oscillations of coronal loops. Astron. Astrophys. 460, 893. DOI. ADS.

    Article  ADS  MATH  Google Scholar 

  • McLaughlin, J.A., Nakariakov, V.M., Dominique, M., Jelínek, P., Takasao, S.: 2018, Modelling quasi-periodic pulsations in solar and stellar flares. Space Sci. Rev. 214, 45. DOI. ADS.

    Article  ADS  Google Scholar 

  • Molevich, N.E., Oraevskii, A.N.: 1988, Second viscosity in thermodynamically nonequilibrium media. Zh. Eksp. Teor. Fiz. 94, 128. [J. Exp. Theor. Phys. 67, 504 (1988)].

    ADS  Google Scholar 

  • Molevich, N.E., Ryashchikov, D.S.: 2020, Autowave pulse in a medium with the heating/cooling misbalance and an arbitrary thermal dispersion. Tech. Phys. Lett. 46, 637. DOI. ADS.

    Article  ADS  Google Scholar 

  • Molevich, N.E., Zavershinskiy, D.I., Ryashchikov, D.S.: 2016, Investigation of the mhd wave dynamics in thermally unstable plasma. Magnetohydrodynamics 52, 191. DOI.

    Article  Google Scholar 

  • Molevich, N.E., Zavershinsky, D.I., Galimov, R.N., Makaryan, V.G.: 2011, Traveling self-sustained structures in interstellar clouds with the isentropic instability. Astrophys. Space Sci. 334, 35. DOI. ADS.

    Article  ADS  MATH  Google Scholar 

  • Murawski, K., Zaqarashvili, T.V., Nakariakov, V.M.: 2011, Entropy mode at a magnetic null point as a possible tool for indirect observation of nanoflares in the solar corona. Astron. Astrophys. 533, A18. DOI. ADS.

    Article  ADS  Google Scholar 

  • Nakariakov, V.M., Kolotkov, D.Y.: 2020, Magnetohydrodynamic waves in the solar corona. Annu. Rev. Astron. Astrophys. 58, 441. DOI. ADS.

    Article  ADS  Google Scholar 

  • Nakariakov, V.M., Mendoza-Briceño, C.A., Ibáñez S., M.H.: 2000, Magnetoacoustic waves of small amplitude in optically thin quasi-isentropic plasmas. Astrophys. J. 528, 767. DOI. ADS.

    Article  ADS  Google Scholar 

  • Nakariakov, V.M., Afanasyev, A.N., Kumar, S., Moon, Y.-J.: 2017, Effect of local thermal equilibrium misbalance on long-wavelength slow magnetoacoustic waves. Astrophys. J. 849, 62. DOI. ADS.

    Article  ADS  Google Scholar 

  • Nakariakov, V.M., Kosak, M.K., Kolotkov, D.Y., Anfinogentov, S.A., Kumar, P., Moon, Y.-J.: 2019, Properties of slow magnetoacoustic oscillations of solar coronal loops by multi-instrumental observations. Astrophys. J. Lett. 874, L1. DOI. ADS.

    Article  ADS  Google Scholar 

  • Nisticò, G., Polito, V., Nakariakov, V.M., Del Zanna, G.: 2017, Multi-instrument observations of a failed flare eruption associated with MHD waves in a loop bundle. Astron. Astrophys. 600, A37. DOI. ADS.

    Article  Google Scholar 

  • Ofman, L., Wang, T.: 2002, Hot coronal loop oscillations observed by SUMER: slow magnetosonic wave damping by thermal conduction. Astrophys. J. Lett. 580, L85. DOI. ADS.

    Article  ADS  Google Scholar 

  • Ofman, L., Wang, T.J., Davila, J.M.: 2012, Slow magnetosonic waves and fast flows in active region loops. Astrophys. J. 754, 111. DOI. ADS.

    Article  ADS  Google Scholar 

  • Owen, N.R., De Moortel, I., Hood, A.W.: 2009, Forward modelling to determine the observational signatures of propagating slow waves for TRACE, SoHO/CDS, and Hinode/EIS. Astron. Astrophys. 494, 339. DOI. ADS.

    Article  ADS  Google Scholar 

  • Polyanin, A.D., Zaitsev, V.F.: 2002, Handbook of Exact Solutions for Ordinary Differential Equations, Chapman and Hall/CRC press. ADS.

    MATH  Google Scholar 

  • Prasad, A., Srivastava, A.K., Wang, T.J.: 2021, Role of compressive viscosity and thermal conductivity on the damping of slow waves in coronal loops with and without heating-cooling imbalance. Solar Phys. 296, 20. DOI. ADS.

    Article  ADS  Google Scholar 

  • Provornikova, E., Ofman, L., Wang, T.: 2018, Excitation of flare-induced waves in coronal loops and the effects of radiative cooling. Adv. Space Res. 61, 645. DOI. ADS.

    Article  ADS  Google Scholar 

  • Reale, F.: 2016, Plasma sloshing in pulse-heated solar and stellar coronal loops. Astrophys. J. Lett. 826, L20. DOI. ADS.

    Article  ADS  Google Scholar 

  • Reale, F., Lopez-Santiago, J., Flaccomio, E., Petralia, A., Sciortino, S.: 2018, X-ray flare oscillations track plasma sloshing along star-disk magnetic tubes in the Orion star-forming region. Astrophys. J. 856, 51. DOI. ADS.

    Article  ADS  Google Scholar 

  • Reale, F., Testa, P., Petralia, A., Kolotkov, D.Y.: 2019, Large-amplitude quasiperiodic pulsations as evidence of impulsive heating in hot transient loop systems detected in the EUV with SDO/AIA. Astrophys. J. 884, 131. DOI. ADS.

    Article  ADS  Google Scholar 

  • Riedl, J.M., Van Doorsselaere, T., Santamaria, I.C.: 2019, Wave modes excited by photospheric p-modes and mode conversion in a multi-loop system. Astron. Astrophys. 625, A144. DOI. ADS.

    Article  Google Scholar 

  • Ruderman, M.S.: 2006, Nonlinear waves in the solar atmosphere. Phil. Trans. Roy. Soc. London Ser. A 364, 485. DOI. ADS.

    Article  ADS  MathSciNet  Google Scholar 

  • Ryashchikov, D.S., Molevich, N.E., Zavershinskii, D.I.: 2017, Characteristic times of acoustic and condensation instability in heat-releasing gas media. Proc. Eng. 176, 416. DOI.

    Article  Google Scholar 

  • Selwa, M., Murawski, K., Solanki, S.K.: 2005, Excitation and damping of slow magnetosonic standing waves in a solar coronal loop. Astron. Astrophys. 436, 701. DOI. ADS.

    Article  ADS  Google Scholar 

  • Somov, B.V., Dzhalilov, N.S., Staude, J.: 2007, Peculiarities of entropy and magnetosonic waves in optically thin cosmic plasma. Astron. Lett. 33, 309. DOI. ADS.

    Article  ADS  Google Scholar 

  • Van Doorsselaere, T., Kupriyanova, E.G., Yuan, D.: 2016, Quasi-periodic pulsations in solar and stellar flares: an overview of recent results (invited review). Solar Phys. 291, 3143. DOI. ADS.

    Article  ADS  Google Scholar 

  • Van Doorsselaere, T., Wardle, N., Del Zanna, G., Jansari, K., Verwichte, E., Nakariakov, V.M.: 2011, The first measurement of the adiabatic index in the solar corona using time-dependent spectroscopy of Hinode/EIS observations. Astrophys. J. Lett. 727, L32. DOI. ADS.

    Article  ADS  Google Scholar 

  • Verwichte, E., Haynes, M., Arber, T.D., Brady, C.S.: 2008, Damping of slow MHD coronal loop oscillations by shocks. Astrophys. J. 685, 1286. DOI. ADS.

    Article  ADS  Google Scholar 

  • Wang, T.: 2011, Standing slow-mode waves in hot coronal loops: observations, modeling, and coronal seismology. Space Sci. Rev. 158, 397. DOI. ADS.

    Article  ADS  Google Scholar 

  • Wang, T.J.: 2016, Waves in solar coronal loops. In: Keiling, A., Lee, D.-H., Nakariakov, V. (eds.) Low-Frequency Waves in Space Plasmas, Geophys. Mono. Ser. 216, Am. Geophys. Union, Washington, 395. DOI. ADS.

    Chapter  Google Scholar 

  • Wang, T., Ofman, L.: 2019, Determination of transport coefficients by coronal seismology of flare-induced slow-mode waves: numerical parametric study of a 1D loop model. Astrophys. J. 886, 2. DOI. ADS.

    Article  ADS  Google Scholar 

  • Wang, T., Ofman, L., Davila, J.M.: 2013, Three-dimensional magnetohydrodynamic modeling of propagating disturbances in fan-like coronal loops. Astrophys. J. Lett. 775, L23. DOI. ADS.

    Article  ADS  Google Scholar 

  • Wang, T., Ofman, L., Sun, X., Provornikova, E., Davila, J.M.: 2015, Evidence of thermal conduction suppression in a solar flaring loop by coronal seismology of slow-mode waves. Astrophys. J. Lett. 811, L13. DOI. ADS.

    Article  ADS  Google Scholar 

  • Wang, T., Ofman, L., Sun, X., Solanki, S.K., Davila, J.M.: 2018, Effect of transport coefficients on excitation of flare-induced standing slow-mode waves in coronal loops. Astrophys. J. 860, 107. DOI. ADS.

    Article  ADS  Google Scholar 

  • Wang, T., Ofman, L., Yuan, D., Reale, F., Kolotkov, D.Y., Srivastava, A.K.: 2021, Slow-mode magnetoacoustic waves in coronal loops. Space Sci. Rev. 217, 34. DOI. ADS.

    Article  ADS  Google Scholar 

  • Yuan, D., Nakariakov, V.M.: 2012, Measuring the apparent phase speed of propagating EUV disturbances. Astron. Astrophys. 543, A9. DOI. ADS.

    Article  ADS  Google Scholar 

  • Zavershinskii, D.I., Kolotkov, D.Y., Nakariakov, V.M., Molevich, N.E., Ryashchikov, D.S.: 2019, Formation of quasi-periodic slow magnetoacoustic wave trains by the heating/cooling misbalance. Phys. Plasmas 26, 082113. DOI. ADS.

    Article  ADS  Google Scholar 

  • Zavershinskii, D.I., Molevich, N.E., Riashchikov, D.S., Belov, S.A.: 2020, Nonlinear magnetoacoustic waves in plasma with isentropic thermal instability. Phys. Rev. E 101, 043204. DOI. ADS.

    Article  ADS  Google Scholar 

  • Zavershinsky, D.I., Molevich, N.E.: 2013, A magnetoacoustic autowave pulse in a heat-releasing ionized gaseous medium. Tech. Phys. Lett. 39, 676. DOI. ADS.

    Article  ADS  Google Scholar 

Download references

Acknowledgments

The work was supported in part by the Ministry of Science and Higher Education of the Russian Federation by State assignment to educational and research institutions under Projects No. FSSS-2020-0014, 0023-2019-0003, and by Subsidy No.075-GZ/C3569/278. D.Y. Kolotkov acknowledges support from the STFC consolidated grant ST/T000252/1.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Zavershinskii.

Ethics declarations

Disclosure of Potential Conflicts of Interest

The authors declare that they have no conflicts of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article belongs to the Topical Collection:

Magnetohydrodynamic (MHD) Waves and Oscillations in the Sun’s Corona and MHD Coronal Seismology

Guest Editors: Dmitrii Kolotkov and Bo Li

Supplementary Information

Below are the links to the electronic supplementary material.

(MP4 104 kB)

(MP4 97 kB)

(MP4 117 kB)

(MP4 127 kB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zavershinskii, D., Kolotkov, D., Riashchikov, D. et al. Mixed Properties of Slow Magnetoacoustic and Entropy Waves in a Plasma with Heating/Cooling Misbalance. Sol Phys 296, 96 (2021). https://doi.org/10.1007/s11207-021-01841-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11207-021-01841-1

Keywords

Navigation