Skip to main content
Log in

Modified Virial Expansion and the Equation of State

  • Research Articles
  • Published:
Russian Journal of Mathematical Physics Aims and scope Submit manuscript

Abstract

We propose a new method for constructing the virial series, in which the expansion in terms of the density is carried out along the line of the unit compressibility factor. This approach greatly simplifies the form of high-order virial coefficients and allows us, by extrapolation, to sum up the entire virial series and obtain the corresponding equation of state. Within our approach, it is shown that the line of the unit compressibility factor is straight. Our approach is applicable to an arbitrary system or substance. The Lennard–Jones system is considered as an example. The critical parameters of this system were found, which agree with the data of numerical simulation.

DOI 10.1134/S1061920821020023

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.

Similar content being viewed by others

References

  1. R. Balescu, Equilibrium and Non-Equilibrium Statistical Mechanics, Wiley-Interscience, New York, 1975.

    MATH  Google Scholar 

  2. D. Ruelle, Statistical Mechanics, W. A. Benjamin, New-York, 1969.

    MATH  Google Scholar 

  3. J. A. Barker, P. J. Leonard, and A. Pompe, “Fifth Virial Coefficients”, J. Chem. Phys., 44:11 (1966), 4206–4211.

    Article  ADS  Google Scholar 

  4. A. J. Schultz and D. A. Kofke, “Sixth, Seventh, and Eighth Virial Coefficients of the Lennard-Jones Model”, Mol. Phys., 107:21 (2009), 2309–2318.

    Article  ADS  Google Scholar 

  5. C. Feng, A. J. Schultz, V. Chaudhary, and D. A. Kofke, “Eighth to Sixteenth Virial Coefficients of the Lennard–Jones Model”, J. Chem. Phys., 143:4 (2015), 044504.

    Article  ADS  Google Scholar 

  6. J. R. Elliott, A. J. Schultz, and D. A. Kofke, “Combined Temperature and Density Series for Fluid-Phase Properties. II. Lennard-Jones Spheres”, J. Chem. Phys., 151:20 (2019), 204501.

    Article  ADS  Google Scholar 

  7. J. Naresh and J. K. Singh, “Virial Coefficients and Inversion Curve of Simple and Associating Fluids”, Fluid Phase Equilibria, 279:1 (2009), 47–55.

    Article  MathSciNet  Google Scholar 

  8. J. R. Elliott, A. J. Schultz, and D. A. Kofke, “Combined Temperature and Density Series for Fluid-Phase Properties. I. Square-Well Spheres”, J. Chem. Phys., 143:11 (2015), 114110.

    Article  ADS  Google Scholar 

  9. M. V. Ushcats, S. J. Ushcats, and A. A. Mochalov, “Virial Coefficients of Morse Potential”, Ukr. J. Phys, 61:2 (2016), 160–167.

    Article  Google Scholar 

  10. G. A. Vompe and G. A. Martynov, “The Self-Consistent Statistical Theory of Condensation”, J. Chem. Phys., 106:14 (1997), 6095–6101.

    Article  ADS  Google Scholar 

  11. E. M. Apfelbaum, V. S. Vorob’ev, and G. A. Martynov, “Regarding Convergence Curve of Cirial Expansion for the Lennard-Jones System”, J. Chem. Phys., 127:6 (2007), 064507.

    Article  ADS  Google Scholar 

  12. C. Zhang, C.-L. Lai, and B. P. Montgomery, “Computation of Virial Coefficients from Integral Equations”, J. Chem. Phys., 142:21 (2015), 214110.

    Article  ADS  Google Scholar 

  13. M. V. Ushcats, “Equation of State beyond the Radius of Convergence of the Virial Expansion”, Phys. Rev. Lett., 109:4 (2012), 040601.

    Article  ADS  Google Scholar 

  14. M. V. Ushcats, “Condensation of the Lennard-Jones Fluid on the Basis of the Gibbs Single-Phase Approach”, J. Chem. Phys., 138:9 (2013), 040601.

    Article  Google Scholar 

  15. M. V. Ushcats, “Communication: Low-Temperature Approximation of the Virial Series for the Lennard–Jones and Modified Lennard–Jones Models”, J. Chem. Phys., 141:10 (2014), 101103.

    Article  ADS  Google Scholar 

  16. E. M. Holleran, “Interrelation of the Virial Coefficients”, J. Chem. Phys., 149:1 (1968), 39–43.

    Article  ADS  Google Scholar 

  17. W. Rudzinski, Summation of the Virial Expansion for the Equation of State, vol. 5, 1972.

    Google Scholar 

  18. G. A. Martynov, Fundamental Theory of Liquids, Adam Hilger, Bristol, 1992.

    Google Scholar 

  19. E. M. Apfelbaum and V. S. Vorob’ev, “The Confirmation of the Critical Point-Zeno-Line Similarity Set from the Numerical Modeling Data for Different Interatomic Potentials”, J. Chem. Phys., 130:21 (2009), 214111.

    Article  ADS  Google Scholar 

  20. E. M. Apfelbaum and V. S. Vorob’ev, “Correspondence between the Critical and the Zeno-Line Parameters for Classical and Quantum Liquids”, J. Phys. Chem. B, 113:11 (2009), 3521–3526.

    Article  Google Scholar 

  21. E. M. Apfelbaum and V. S. Vorob’ev, “Systematization of the Critical Parameters of Substances due to Their Connection with Heat of Evaporation and Boyle Temperature”, Int. J. Thermophys., 41:1 (2020), 8.

    Article  ADS  Google Scholar 

  22. E. M. Apfelbaum and V. S. Vorob’ev, “The Line of the Unit Compressibility Factor (Zeno-Line) for Crystal States”, J. Phys. Chem. B, 124:24 (2020), 5021–5027.

    Article  Google Scholar 

  23. M. Thol, G. Rutkai, A. Köster, R. Lustig, R. Span, and J. Vrabec, “Equation of State for the Lennard–Jones Fluid”, J. Phys. Chem. Ref. Data, 45:2 (2016), 023101.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. M. Apfelbaum.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Apfelbaum, E.M., Vorob’ev, V.S. Modified Virial Expansion and the Equation of State. Russ. J. Math. Phys. 28, 147–155 (2021). https://doi.org/10.1134/S1061920821020023

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1061920821020023

Navigation