Skip to main content
Log in

A Hybrid Microstructural-Continuum Multiscale Approach for Modeling Hyperelastic Fibrous Soft Tissue

  • Published:
Journal of Elasticity Aims and scope Submit manuscript

Abstract

The heterogeneous, nonlinear, anisotropic material behavior of biological tissues makes precise definition of an accurate constitutive model difficult. One possible solution to this issue would be to define microstructural elements and perform fully coupled multiscale simulation. However, for complex geometries and loading scenarios, the computational costs of such simulations can be prohibitive. Ideally then, we should seek a method that contains microstructural detail, but leverages the speed of classical continuum-based finite-element (FE) modeling. In this work, we demonstrate the use of the Holzapfel-Gasser-Ogden (HGO) model (Holzapfel et al. in J. Elast. 61:1–48, 2000; Gasser et al. in J. R. Soc. Interface 3(6):15–35, 2006) to fit the behavior of microstructural network models. We show that Delaunay microstructural networks can be fit to the HGO strain energy function by calculating fiber network strain energy and average fiber stretch ratio. We then use the HGO constitutive model in a FE framework to improve the speed of our hybrid model, and demonstrate that this method, combined with a material property update scheme, can match a full multiscale simulation. This method gives us flexibility in defining complex FE simulations that would be impossible, or at least prohibitively time consuming, in multiscale simulation, while still accounting for microstructural heterogeneity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data Availability

All raw data are available from the contact author upon request.

Code Availability

The codes, simulations, and models used in this work are available on GitHub.

References

  1. Holzapfel, G.A., Gasser, T.C., Ogden, R.W.: A new constitutive framework for arterial wall mechanics and a comparative study of material models. J. Elast. 61, 1–48 (2000). https://doi.org/10.1023/A:1010835316564

    Article  MathSciNet  MATH  Google Scholar 

  2. Gasser, T.C., Ogden, R.W., Holzapfel, G.A.: Hyperelastic modelling of arterial layers with distributed collagen fibre orientations. J. R. Soc. Interface 3(6), 15–35 (2006). https://doi.org/10.1098/rsif.2005.0073

    Article  Google Scholar 

  3. Holzapfel, G.A.: Biomechanics of soft tissue. In: The Handbook of Materials Behavior Models, pp. 1049–1063. Academic Press, San Diego (2001)

    Google Scholar 

  4. Humphrey, J.D.: Cardiovascular Solid Mechanics (2002)

    Book  Google Scholar 

  5. Volokh, K.Y.: On arterial fiber dispersion and auxetic effect. J. Biomech. 61, 123–130 (2017). https://doi.org/10.1016/j.jbiomech.2017.07.010

    Article  Google Scholar 

  6. Gatt, R., Vella Wood, M., Gatt, A., Zarb, F., Formosa, C., Azzopardi, K.M., Casha, A., Agius, T.P., Schembri-Wismayer, P., Attard, L., Chockalingam, N., Grima, J.N.: Negative Poisson’s ratios in tendons: an unexpected mechanical response. Acta Biomater. 24, 201–208 (2015). https://doi.org/10.1016/J.ACTBIO.2015.06.018

    Article  Google Scholar 

  7. Nolan, D.R., Mcgarry, J.P.: On the compressibility of arterial tissue. Ann. Biomed. Eng. 44, 993–1007 (2016). https://doi.org/10.1007/s10439-015-1417-1

    Article  Google Scholar 

  8. Di Puccio, F., Celi, S., Forte, P.: Review of experimental investigations on compressibility of arteries and introduction of a new apparatus. https://doi.org/10.1007/s11340-012-9614-4

  9. Yosibash, Z., Manor, I., Gilad, I., Willentz, U.: Experimental evidence of the compressibility of arteries. J. Mech. Behav. Biomed. Mater. 39, 339–354 (2014). https://doi.org/10.1016/J.JMBBM.2014.07.030

    Article  Google Scholar 

  10. Yossef, O.E., Farajian, M., Gilad, I., Willenz, U., Gutman, N., Yosibash, Z.: Further experimental evidence of the compressibility of arteries. J. Mech. Behav. Biomed. Mater. 65, 177–189 (2017). https://doi.org/10.1016/J.JMBBM.2016.08.013

    Article  Google Scholar 

  11. Guo, X., Kassab, G.S.: Variation of mechanical properties along the length of the aorta in C57bl/6 mice. Am. J. Physiol., Heart Circ. Physiol. (2003). https://doi.org/10.1152/ajpheart.00567.2003

    Article  Google Scholar 

  12. Fung, Y.C.: Elasticity of soft tissues in simple elongation. Exp. Mech. 52, 895–902 (2012). https://doi.org/10.1152/ajplegacy.1967.213.6.1532

    Article  Google Scholar 

  13. Bellini, C., Ferruzzi, J., Roccabianca, S., Di Martino, E.S., Humphrey, J.D.: A microstructurally motivated model of arterial wall mechanics with mechanobiological implications. Ann. Biomed. Eng. 42, 488–502 (2014). https://doi.org/10.1007/s10439-013-0928-x

    Article  Google Scholar 

  14. Holzapfel, G.A., Ogden, R.W.: An arterial constitutive model accounting for collagen content and cross-linking. J. Mech. Phys. Solids 136, 103682 (2019). https://doi.org/10.1016/J.JMPS.2019.103682

    Article  MathSciNet  Google Scholar 

  15. Li, K., Ogden, R.W., Holzapfel, G.A.: An exponential constitutive model excluding fibres under compression: application to extension–inflation of a residually stressed carotid artery. Math. Mech. Solids 23, 1206–1224 (2018). https://doi.org/10.1177/1081286517712077

    Article  MathSciNet  MATH  Google Scholar 

  16. Cheng, J.K., Stoilov, I., Mecham, R.P., Wagenseil, J.E.: A fiber-based constitutive model predicts changes in amount and organization of matrix proteins with development and disease in the mouse aorta. Biomech. Model. Mechanobiol. (2013). https://doi.org/10.1007/s10237-012-0420-9

    Article  Google Scholar 

  17. Gasser, T.C., Schulze-Bauer, C.A.J., Holzapfel, G.A.: A three-dimensional finite element model for arterial clamping. J. Biomech. Eng. 124, 355–363 (2002). https://doi.org/10.1115/1.1485284

    Article  Google Scholar 

  18. Mihai, L.A., Budday, S., Holzapfel, G.A., Kuhl, E., Goriely, A.: A family of hyperelastic models for human brain tissue. J. Mech. Phys. Solids 106, 60–79 (2017). https://doi.org/10.1016/j.jmps.2017.05.015

    Article  ADS  MathSciNet  Google Scholar 

  19. Claeson, A.A.A.A., Barocas, V.H.V.H.: Planar biaxial extension of the lumbar facet capsular ligament reveals significant in-plane shear forces. J. Mech. Behav. Biomed. Mater. 65, 127–136 (2017). https://doi.org/10.1016/j.jmbbm.2016.08.019

    Article  Google Scholar 

  20. Guan, D., Ahmad, F., Theobald, P., Soe, S., Luo, X., Gao, H.: On the AIC-based model reduction for the general Holzapfel–Ogden myocardial constitutive law. Biomech. Model. Mechanobiol. 18, 1213–1232 (2019). https://doi.org/10.1007/s10237-019-01140-6

    Article  Google Scholar 

  21. Holzapfel, G.A., Ogden, R.W.: Constitutive modelling of passive myocardium: a structurally based framework for material characterization. Trans. R. Soc. A 367, 3445–3475 (2009). https://doi.org/10.1098/rsta.2009.0091

    Article  ADS  MathSciNet  MATH  Google Scholar 

  22. Laurence, D.W., Johnson, E.L., Hsu, M., Baumwart, R., Mir, A., Burkhart, H.M., Holzapfel, G.A., Wu, Y., Lee, C.: A pilot in silico modeling-based study of the pathological effects on the biomechanical function of tricuspid valves. Int. J. Numer. Methods Biomed. Eng. 36, e3346 (2020). https://doi.org/10.1002/cnm.3346

    Article  MathSciNet  Google Scholar 

  23. Shahraki, N.M., Fatemi, A., Goel, V.K., Agarwal, A.: On the use of biaxial properties in modeling annulus as a Holzapfel-Gasser-Ogden material. Front. Bioeng. Biotechnol. 3, 69 (2015). https://doi.org/10.3389/fbioe.2015.00069

    Article  Google Scholar 

  24. Gasser, T.C., Holzapfel, G.A.: Modeling plaque fissuring and dissection during balloon angioplasty intervention. Ann. Biomed. Eng. 35, 711–723 (2007). https://doi.org/10.1007/s10439-007-9258-1

    Article  Google Scholar 

  25. McEvoy, E., Holzapfel, G.A., McGarry, P.: Compressibility and anisotropy of the ventricular myocardium: experimental analysis and microstructural modeling. J. Biomech. Eng. 140, 081004 (2018). https://doi.org/10.1115/1.4039947

    Article  Google Scholar 

  26. Khayyeri, H., Longo, G., Gustafsson, A., Isaksson, H.: Comparison of structural anisotropic soft tissue models for simulating Achilles tendon tensile behaviour. J. Mech. Behav. Biomed. Mater. 61, 431–443 (2016). https://doi.org/10.1016/j.jmbbm.2016.04.007

    Article  Google Scholar 

  27. Laville, C., Pradille, C., Tillier, Y.: Mechanical characterization and identification of material parameters of porcine aortic valve leaflets. J. Mech. Behav. Biomed. Mater. 112, 104036 (2020). https://doi.org/10.1016/j.jmbbm.2020.104036

    Article  Google Scholar 

  28. Rodríguez, J.F., Ruiz, C., Doblaré, M., Holzapfel, G.A.: Mechanical stresses in abdominal aortic aneurysms: influence of diameter, asymmetry, and material anisotropy. J. Biomech. Eng. 130, 021023 (2008). https://doi.org/10.1115/1.2898830

    Article  Google Scholar 

  29. Holzapfel, G.A., Niestrawska, J.A., Ogden, R.W., Reinisch, A.J., Schriefl, A.J.: Modelling non-symmetric collagen fibre dispersion in arterial walls. J. R. Soc. Interface 12, 20150188 (2015). https://doi.org/10.1098/rsif.2015.0188

    Article  Google Scholar 

  30. Li, K., Ogden, R.W., Holzapfel, G.A.: A discrete fibre dispersion method for excluding fibres under compression in the modelling of fibrous tissues. J. R. Soc. Interface 15, 20170766 (2018). https://doi.org/10.1098/rsif.2017.0766

    Article  Google Scholar 

  31. Li, K., Ogden, R.W., Holzapfel, G.A.: Modeling fibrous biological tissues with a general invariant that excludes compressed fibers. J. Mech. Phys. Solids 110, 38–53 (2018). https://doi.org/10.1016/j.jmps.2017.09.005

    Article  ADS  MathSciNet  Google Scholar 

  32. Nolan, D.R., Gower, A.L., Destrade, M., Ogden, R.W., McGarry, J.P.: A robust anisotropic hyperelastic formulation for the modelling of soft tissue. J. Mech. Behav. Biomed. Mater. 39, 48–60 (2014). https://doi.org/10.1016/j.jmbbm.2014.06.016

    Article  Google Scholar 

  33. Latorre, M., Montáns, F.J.: On the tension-compression switch of the Gasser-Ogden-Holzapfel model: analysis and a new pre-integrated proposal. J. Mech. Behav. Biomed. Mater. 57, 175–189 (2016). https://doi.org/10.1016/j.jmbbm.2015.11.018

    Article  Google Scholar 

  34. Melnik, A.V., Borja Da Rocha, H., Goriely, A.: On the modeling of fiber dispersion in fiber-reinforced elastic materials. Int. J. Non-Linear Mech. 75, 92–106 (2015). https://doi.org/10.1016/j.ijnonlinmec.2014.10.006

    Article  ADS  Google Scholar 

  35. Lanir, Y.: Constitutive equations for fibrous connective tissues. J. Biomech. 18, 1 (1983)

    Article  Google Scholar 

  36. Chandran, P.L., Barocas, V.H.: Affine versus non-affine fibril kinematics in collagen networks: theoretical studies of network behavior. J. Biomech. Eng. 128, 259–270 (2006). https://doi.org/10.1115/1.2165699

    Article  Google Scholar 

  37. Hatami-Marbini, H., Picu, R.C.: Effect of fiber orientation on the non-affine deformation of random fiber networks. Acta Mech. 205, 77–84 (2009). https://doi.org/10.1007/s00707-009-0170-7

    Article  MATH  Google Scholar 

  38. Korenczuk, C.E., Dhume, R.Y., Liao, K., Barocas, V.H.: Ex vivo mechanical tests and multiscale computational modeling highlight the importance of intramural shear stress in ascending thoracic aortic aneurysms. J. Biomech. Eng. (2019). https://doi.org/10.1115/1.4045270

    Article  Google Scholar 

  39. Zhang, S., Zarei, V., Winkelstein, B.A., Barocas, V.H.: Multiscale mechanics of the cervical facet capsular ligament, with particular emphasis on anomalous fiber realignment prior to tissue failure. Biomech. Model. Mechanobiol. 17, 133–145 (2018). https://doi.org/10.1007/s10237-017-0949-8

    Article  Google Scholar 

  40. Marino, M., Vairo, G.: Stress and strain localization in stretched collagenous tissues via a multiscale modelling approach. Comput. Methods Biomech. Biomed. Eng. 17, 11–30 (2014). https://doi.org/10.1080/10255842.2012.658043

    Article  ADS  Google Scholar 

  41. Weinberg, E.J., Kaazempur Mofrad, M.R.: A multiscale computational comparison of the bicuspid and tricuspid aortic valves in relation to calcific aortic stenosis. J. Biomech. 41, 3482–3487 (2008). https://doi.org/10.1016/j.jbiomech.2008.08.006

    Article  Google Scholar 

  42. Weinberg, E.J., Mofrad, M.R.K.: Three-dimensional, multiscale simulations of the human aortic valve. Cardiovasc. Eng. 7, 140–155 (2007). https://doi.org/10.1007/s10558-007-9038-4

    Article  Google Scholar 

  43. Zarei, V., Liu, C.J., Claeson, A.A., Akkin, T., Barocas, V.H.: Image-based multiscale mechanical modeling shows the importance of structural heterogeneity in the human lumbar facet capsular ligament. Biomech. Model. Mechanobiol. 16, 1425–1438 (2017). https://doi.org/10.1007/s10237-017-0896-4

    Article  Google Scholar 

  44. Barocas, V.H.: Multiscale, structure-based modeling for the elastic mechanical behavior of arterial walls. J. Biomech. Eng. 129, 611 (2007). https://doi.org/10.1115/1.2746387

    Article  Google Scholar 

  45. Sander, E., Stylianopoulos, T., Tranquillo, R., Barocas, V.: Image-based biomechanics of collagen-based tissue equivalents. IEEE Eng. Med. Biol. Mag. 28, 10–18 (2009). https://doi.org/10.1109/MEMB.2009.932486

    Article  Google Scholar 

  46. Gonçalves Coelho, P., Fernandes, P.R., Carric-O Rodrigues, H.: Multiscale modeling of bone tissue with surface and permeability control. J. Biomech. 44, 321–329 (2011). https://doi.org/10.1016/j.jbiomech.2010.10.007

    Article  Google Scholar 

  47. Virgilio, K.M., Martin, K.S., Peirce, S.M., Blemker, S.S.: Multiscale models of skeletal muscle reveal the complex effects of muscular dystrophy on tissue mechanics and damage susceptibility. Interface Focus 5, 20140080 (2015). https://doi.org/10.1098/rsfs.2014.0080

    Article  Google Scholar 

  48. Korenczuk, C.E., Barocas, V.H., Richardson, W.J.: Effects of collagen heterogeneity on myocardial infarct mechanics in a multiscale fiber network model. J. Biomech. Eng. 141, 091015 (2019). https://doi.org/10.1115/1.4043865

    Article  Google Scholar 

  49. Maceri, F., Marino, M., Vairo, G.: A unified multiscale mechanical model for soft collagenous tissues with regular fiber arrangement. J. Biomech. 43, 355–363 (2010). https://doi.org/10.1016/j.jbiomech.2009.07.040

    Article  Google Scholar 

  50. Hatami-Marbini, H., Shahsavari, A., Picu, R.C.: Multiscale modeling of semiflexible random fibrous structures. Comput. Aided Des. 45, 77–83 (2013). https://doi.org/10.1016/j.cad.2011.10.002

    Article  Google Scholar 

  51. Gasser, T.C., Holzapfel, G.A.: Modeling the propagation of arterial dissection. Eur. J. Mech. A, Solids 25, 617–633 (2006). https://doi.org/10.1016/j.euromechsol.2006.05.004

    Article  ADS  MathSciNet  MATH  Google Scholar 

  52. Horvat, N., Virag, L., Holzapfel, G.A., Sorić, J., Karšaj, I.: A finite element implementation of a growth and remodeling model for soft biological tissues: verification and application to abdominal aortic aneurysms. Comput. Methods Appl. Mech. Eng. 352, 586–605 (2019). https://doi.org/10.1016/j.cma.2019.04.041

    Article  ADS  MathSciNet  MATH  Google Scholar 

  53. Fereidoonnezhad, B., Naghdabadi, R., Sohrabpour, S., Holzapfel, G.A.: A mechanobiological model for damage-induced growth in arterial tissue with application to in-stent restenosis. J. Mech. Phys. Solids 101, 311–327 (2017). https://doi.org/10.1016/j.jmps.2017.01.016

    Article  ADS  MathSciNet  Google Scholar 

  54. Rolf-Pissarczyk, M., Li, K., Fleischmann, D., Holzapfel, G.A.: A discrete approach for modeling degraded elastic fibers in aortic dissection. Comput. Methods Appl. Mech. Eng. 373, 113511 (2021). https://doi.org/10.1016/j.cma.2020.113511

    Article  ADS  MathSciNet  MATH  Google Scholar 

  55. Mao, W., Caballero, A., McKay, R., Primiano, C., Sun, W.: Fully-coupled fluid-structure interaction simulation of the aortic and mitral valves in a realistic 3D left ventricle model. PLoS ONE 12, e0184729 (2017). https://doi.org/10.1371/journal.pone.0184729

    Article  Google Scholar 

  56. Balzani, D., Brinkhues, S., Holzapfel, G.A.: Constitutive framework for the modeling of damage in collagenous soft tissues with application to arterial walls. Comput. Methods Appl. Mech. Eng. 213–216, 139–151 (2012). https://doi.org/10.1016/j.cma.2011.11.015

    Article  ADS  MathSciNet  MATH  Google Scholar 

  57. Erdemir, A., Bennetts, C., Davis, S., Reddy, A., Sibole, S.: Multiscale cartilage biomechanics: technical challenges in realizing a high-throughput modelling and simulation workflow. Interface Focus 5, 20140081 (2015). https://doi.org/10.1098/rsfs.2014.0081

    Article  Google Scholar 

  58. Witzenburg, C.M.C.M., Dhume, R.Y.R.Y., Shah, S.B.S.B., Korenczuk, C.E.C.E., Wagner, H.P.H.P., Alford, P.W.P.W., Barocas, V.H.V.H.: Failure of the porcine ascending aorta: multidirectional experiments and a unifying microstructural model. J. Biomech. Eng. 139, 031005 (2017). https://doi.org/10.1115/1.4035264

    Article  Google Scholar 

  59. Bersie-Larson, L.M., Gyoneva, L., Goodman, D.J., Dorfman, K.D., Segal, Y., Barocas, V.H.: Glomerular filtration and podocyte tensional homeostasis: importance of the minor type IV collagen network. Biomech. Model. Mechanobiol. (2020). https://doi.org/10.1007/s10237-020-01347-y

    Article  Google Scholar 

  60. Mahutga, R.R., Barocas, V.H.: Investigation of pathophysiological aspects of aortic growth, remodeling, and failure using a discrete-fiber microstructural model. J. Biomech. Eng. 142, 111007 (2020). https://doi.org/10.1115/1.4048031

    Article  Google Scholar 

  61. Sajjadinia, S.S., Carpentieri, B., Holzapfel, G.A.: A backward pre-stressing algorithm for efficient finite element implementation of in vivo material and geometrical parameters into fibril-reinforced mixture models of articular cartilage. J. Mech. Behav. Biomed. Mater. 114, 104203 (2020). https://doi.org/10.1016/j.jmbbm.2020.104203

    Article  Google Scholar 

  62. Gültekin, O., Dal, H., Holzapfel, G.A.: Numerical aspects of anisotropic failure in soft biological tissues favor energy-based criteria: a rate-dependent anisotropic crack phase-field model. Comput. Methods Appl. Mech. Eng. 331, 23–52 (2018). https://doi.org/10.1016/j.cma.2017.11.008

    Article  ADS  MathSciNet  MATH  Google Scholar 

  63. Holzapfel, G.A., Stadler, M., Gasser, T.C.: Changes in the mechanical environment of stenotic arteries during interaction with stents: computational assessment of parametric stent designs. J. Biomech. Eng. 127, 166–180 (2005). https://doi.org/10.1115/1.1835362

    Article  Google Scholar 

  64. Holzapfel, G.A., Ogden, R.W., Sherifova, S.: On fibre dispersion modelling of soft biological tissues: A review. Proc. R. Soc. A 475, 20180736 (2019). https://doi.org/10.1098/rspa.2018.0736

    Article  ADS  MathSciNet  Google Scholar 

  65. Federico, S., Gasser, T.C.: Nonlinear elasticity of biological tissues with statistical fibre orientation. J. R. Soc. Interface. 7 (2010). https://doi.org/10.1098/rsif.2009.0502

  66. Chandran, P.L.P.L., Barocas, V.H.V.H.: Deterministic material-based averaging theory model of collagen gel micromechanics. J. Biomech. Eng. 129, 137 (2007). https://doi.org/10.1115/1.2472369

    Article  Google Scholar 

  67. Little, J.S., Khalsa, P.S.: Material properties of the human lumbar facet joint capsule. J. Biomech. Eng. 127, 15–24 (2005). https://doi.org/10.1115/1.1835348

    Article  Google Scholar 

  68. Stender, C.J., Rust, E., Martin, P.T., Neumann, E.E., Brown, R.J., Lujan, T.J.: Modeling the effect of collagen fibril alignment on ligament mechanical behavior. Biomech. Model. Mechanobiol. 17, 543–557 (2018). https://doi.org/10.1007/s10237-017-0977-4

    Article  Google Scholar 

  69. Dhume, R.Y., Shih, E.D., Barocas, V.H.: Multiscale model of fatigue of collagen gels. Biomech. Model. Mechanobiol. 18, 175–187 (2019). https://doi.org/10.1007/s10237-018-1075-y

    Article  Google Scholar 

  70. Dhume, R.Y., Barocas, V.H.: Emergent structure-dependent relaxation spectra in viscoelastic fiber networks in extension. Acta Biomater. 87, 245–255 (2019). https://doi.org/10.1016/j.actbio.2019.01.027

    Article  Google Scholar 

  71. Billiar, K.L., Sacks, M.S.: Biaxial mechanical properties of the native and glutaraldehyde- treated aortic valve cusp: Part II – a structural constitutive model. J. Biomech. Eng. 122, 327–335 (2000)

    Article  Google Scholar 

  72. Gacek, E., Bermel, E.A., Ellingson, A.M., Barocas, V.H.: Through-thickness regional variation in the mechanical characteristics of the lumbar facet capsular ligament. Biomech. Model. Mechanobiol. (2021). https://doi.org/10.1007/s10237-021-01455-3

    Article  Google Scholar 

  73. Zarei, V., Dhume, R.Y., Ellingson, A.M., Barocas, V.H.: Multiscale modelling of the human lumbar facet capsular ligament: analysing spinal motion from the joint to the neurons. J. R. Soc. Interface 15, 20180550 (2018). https://doi.org/10.1098/rsif.2018.0550

    Article  Google Scholar 

  74. Bermel, E.A., Barocas, V.H., Ellingson, A.M.: The role of the facet capsular ligament in providing spinal stability. Comput. Methods Biomech. Biomed. Eng. 21, 712–721 (2018). https://doi.org/10.1080/10255842.2018.1514392

    Article  Google Scholar 

  75. Maas, S.A., Ellis, B.J., Ateshian, G.A., Weiss, J.A.: FEBio: finite elements for biomechanics. J. Biomech. Eng. 134, 011005 (2012). https://doi.org/10.1115/1.4005694

    Article  Google Scholar 

  76. Maas, S.A., Rawlins, D., Weiss, J.A., Ateshian, G.A.: FEBio User Manual v2.8. https://help.febio.org/FEBio/FEBio_um_2_8/

  77. Lane, B.A., Harmon, K.A., Goodwin, R.L., Yost, M.J., Shazly, T., Eberth, J.F.: Constitutive modeling of compressible type-I collagen hydrogels. Med. Eng. Phys. 53, 39–48 (2018). https://doi.org/10.1016/j.medengphy.2018.01.003

    Article  Google Scholar 

  78. Böl, M., Reese, S., Parker, K.K., Kuhl, E.: Computational modeling of muscular thin films for cardiac repair. Comput. Mech. 43, 535–544 (2009). https://doi.org/10.1007/s00466-008-0328-5

    Article  Google Scholar 

  79. Eriksson, T., Prassl, A., Plank, G., Holzapfel, G.: Influence of myocardial fiber/sheet orientations on left ventricular mechanical contraction. Math. Mech. Solids 18, 592–606 (2013). https://doi.org/10.1177/1081286513485779

    Article  MathSciNet  MATH  Google Scholar 

  80. Win, Z., Buksa, J.M., Alford, P.W.: Architecture-dependent anisotropic hysteresis in smooth muscle cells. Biophys. J. 115, 2044–2054 (2018). https://doi.org/10.1016/j.bpj.2018.09.027

    Article  ADS  Google Scholar 

  81. Vanderheiden, S.M.S.M., Hadi, M.F.M.F., Barocas, V.H.V.H.: Crack propagation versus fiber alignment in collagen gels: experiments and multiscale simulation. J. Biomech. Eng. 137, 121002 (2015). https://doi.org/10.1115/1.4031570

    Article  Google Scholar 

  82. Hadi, M.F.F., Sander, E.A.A., Ruberti, J.W.W., Barocas, V.H.H.: Simulated remodeling of loaded collagen networks via strain-dependent enzymatic degradation and constant-rate fiber growth. Mech. Mater. 44, 72–82 (2012). https://doi.org/10.1016/j.mechmat.2011.07.003

    Article  Google Scholar 

  83. Zeinali-Davarani, S., Wang, Y., Chow, M.J., Turcotte, R., Zhang, Y.: Contribution of collagen fiber undulation to regional biomechanical properties along porcine thoracic aorta. J. Biomech. Eng. (2015). https://doi.org/10.1115/1.4029637

    Article  Google Scholar 

  84. Smoljkić, M., Fehervary, H., Van den Bergh, P., Jorge-Peñas, A., Kluyskens, L., Dymarkowski, S., Verbrugghe, P., Meuris, B., Vander Sloten, J., Famaey, N.: Biomechanical characterization of ascending aortic aneurysms. Biomech. Model. Mechanobiol. (2017). https://doi.org/10.1007/s10237-016-0848-4

    Article  Google Scholar 

  85. Holzapfel, G.A., Ogden, R.W.: Modelling the layer-specific three-dimensional residual stresses in arteries, with an application to the human aorta. J. R. Soc. Interface 7, 787–799 (2010). https://doi.org/10.1098/rsif.2009.0357

    Article  Google Scholar 

  86. Baek, S., Valentin, A., Humphrey, J.D.: Biochemomechanics of cerebral vasospasm and its resolution: II. Constitutive relations and model simulations. Ann. Biomed. Eng. 35, 1498–1509 (2007). https://doi.org/10.1007/s10439-007-9322-x

    Article  Google Scholar 

Download references

Acknowledgements

In this special issue in honor of Gerhard Holzapfel’s remarkable contributions to the field of tissue mechanics, the authors are happy to express their gratitude for his hard work, devotion to high-quality science, and commitment to the biomechanics community. He is both a great scientist and a great person, and we are lucky to have him as a colleague.

Funding

This work was supported by the National Institutes of Health through the grants U01 AT010326, U54 CA210190, T32 AR050938, and U01 HL139471. Ryan R. Mahutga and Lauren M. Bersie-Larson are supported by University of Minnesota Doctoral Dissertation Fellowships. Ryan R. Mahutga was supported by National Science Foundation Graduate Research Fellowship Program (NSF GRFP) under Grant No. 00039202. Any opinion, findings, and conclusions or recommendations expressed in this material are those of the authors(s) and do not necessarily reflect the views of the National Science Foundation.

Author information

Authors and Affiliations

Authors

Contributions

MN and VHB conceived the initial idea for this work. MN, RRM, LMBL, and EG performed the research. MN, RRM, LMBL, EG, and VHB prepared and edited the manuscript.

Corresponding author

Correspondence to Victor H. Barocas.

Ethics declarations

Conflict of Interest

The authors declare no conflicts of interest.

Ethics Approval

Not applicable.

Consent to Participate

Not applicable.

Consent for Publication

Proper consent has been obtained from all applicable parties.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nikpasand, M., Mahutga, R.R., Bersie-Larson, L.M. et al. A Hybrid Microstructural-Continuum Multiscale Approach for Modeling Hyperelastic Fibrous Soft Tissue. J Elast 145, 295–319 (2021). https://doi.org/10.1007/s10659-021-09843-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10659-021-09843-7

Keywords

Mathematics Subject Classification

Navigation