Skip to main content
Log in

Trace Level Colorimetric Hg2+ Sensor Driven by Citrus japonica Leaf Extract Derived Silver Nanoparticles: Green Synthesis and Application

  • Original Paper
  • Published:
Journal of Cluster Science Aims and scope Submit manuscript

Abstract

In this report we demonstrate the use of Citrus japonica (CJ) leaf extract for the first time as biological liquid to work as capping as well as reducing agent for synthesizing extremely stable silver nanoparticles (AgNPs) from its precursor silver salt. Different parameters such as pH, speed of reaction, silver salt concentrations and leaf extract were optimized for the formation of CJ-AgNPs. CJ-AgNPs were then characterized through techniques like Ultra-violet visible (UV–Vis) spectroscopy, Fourier transform infra-red (FTIR) spectroscopy, X-ray diffraction (XRD), atomic force microscopy (AFM), Zeta-potential analysis (ZPA) and dynamic light scattering (DLS). As-formed CJ-AgNPs were verified as highly sensitive, extremely selective, stable, economical, eco-friendly and rapidly responsive colorimetric sensor for Hg2+ detection based on color change in solution from yellow to brownish. The dynamic range of developed sensor worked linearly in the range of 0.3–7.3 µM with R2 value of 0.999 and limit of (LOD) and limit of quantification (LOQ) as 0.09 µM and 0.30 µM respectively. The sensor demonstrated negligible interference under the influence of ions like Mg2+, Zn2+, Cu2+, Co2+, Pb2+, Cd2+ and Fe2+ and corresponding anions. The developed sensor was successfully applied to detect Hg2+ at low level in some real water samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Scheme 1
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. P. A. Ariya, M. Amyot, A. Dastoor, D. Deeds, A. Feinberg, G. Kos, A. Poulain, A. Ryjkov, K. Semeniuk, M. Subir, and K. Toyota (2015). Chem. Rev. 115, 3760. https://doi.org/10.1021/cr500667e.

    Article  CAS  PubMed  Google Scholar 

  2. S. Gao, X. Jia, and Y. Chen (2013). J. Nanopart. Res. 15, 1385. https://doi.org/10.1007/s11051-012-1385-4.

    Article  CAS  Google Scholar 

  3. J. H. Hu, J. Bin, J. Qia Li, and J. J. Chena (2015). New J. Chem. 39, 843. https://doi.org/10.1039/C4NJ01147C.

    Article  CAS  Google Scholar 

  4. V. V. Kumar and S. P. Anthony (2014). Sens. Actuators B: Chem. 191, 31. https://doi.org/10.1016/j.snb.2013.09.089.

    Article  CAS  Google Scholar 

  5. K. Farhadi, M. Forough, R. Molaei, S. Hajizadeh, and A. Rafipour (2012). Sens. Actuators B: Chem. 161, 880. https://doi.org/10.1016/j.snb.2011.11.052.

    Article  CAS  Google Scholar 

  6. Y. He, M. He, K. Nan, R. Cao, B. Chen, and B. Hu (2019). J. Chromatogr. A 1595, 19. https://doi.org/10.1016/j.chroma.2019.02.050.

    Article  CAS  PubMed  Google Scholar 

  7. M. G. Choi, S. Y. Park, K. Y. Park, and S.-K. Chang (2019). Sci. Rep. 9, (1), 3348.

    Article  Google Scholar 

  8. C. O. Amorim, J. N. Gonçalves, D. S. Tavares, A. S. Fenta, C. B. Lopes, E. Pereira, T. Trindade, J. G. Correia, and V. S. Amaral (2018). Microchem. J. 138, 418. https://doi.org/10.1016/j.microc.2018.01.039.

    Article  CAS  Google Scholar 

  9. C. Gao and X.-J. Huang (2013). TrAC Trends Anal. Chem. 51, 1. https://doi.org/10.1016/j.trac.2013.05.010.

    Article  CAS  Google Scholar 

  10. M. S. Jagirani, S. A. Mahesar, Sirajuddin, S. T. H. Sherazi, A. H. Kori, S. A. Lakho, N. H. Kalwar, and S. S. Memon (2021). J. Clust. Sci.. https://doi.org/10.1007/s10876-020-01948-8.

    Article  Google Scholar 

  11. C. Chen, R. Wang, L. Guo, N. Fu, H. Dong, and Y. Yuan (2011). Org. Lett. 13, 1162. https://doi.org/10.1021/ol200024g.

    Article  CAS  PubMed  Google Scholar 

  12. D. Shetty, S. Boutros, A. Eskhan, A. M. D. Lena, T. Skorjanc, Z. Asfari, H. Traboulsi, J. Mazher, J. Raya, F. Banat, and A. Trabolsi (2019). ACS Appl. Mater. Interf. 11, 12898. https://doi.org/10.1021/acsami.9b02259.

    Article  CAS  Google Scholar 

  13. P.-J. J. Huang, F. Wang, and J. Liu (2015). Anal. Chem. 87, 6890. https://doi.org/10.1021/acs.analchem.5b01362.

    Article  CAS  PubMed  Google Scholar 

  14. J. Fernando and P. Gurulakshmi (2016). J. Nanosci. Technol. 2, 234. https://doi.org/10.13140/RG.2.2.18292.19842.

    Article  Google Scholar 

  15. L. Sintubin, W. Verstraete, and N. Boon (2012). Biotechnol. Bioeng. 109, 2422. https://doi.org/10.1002/bit.24570.

    Article  CAS  PubMed  Google Scholar 

  16. H. Lee, G. Ro, J. M. Kim, and Y. Kim (2017). Mater. Lett. 209, 138. https://doi.org/10.1016/j.matlet.2017.07.130.

    Article  CAS  Google Scholar 

  17. R. Dasari and F. P. Zamborini (2015). Anal. Chem. 88, 675. https://doi.org/10.1021/acs.analchem.5b02343.

    Article  CAS  PubMed  Google Scholar 

  18. F. Tanvir, A. Yaqub, S. Tanvir, R. An, and W. A. Anderson (2019). Materials 12, 1533. https://doi.org/10.3390/ma12091533.

    Article  CAS  PubMed Central  Google Scholar 

  19. K. Z. Kamali, A. Pandikumar, S. Jayabal, R. Ramaraj, H. N. Lim, B. H. Ong, C. S. D. Bien, Y. Y. Kee, and N. M. Huang (2016). Microchim. Acta 183, 369. https://doi.org/10.1007/s00604-015-1658-6.

    Article  CAS  Google Scholar 

  20. B. Moldovan, L. David, M. Achim, S. Clichici, and G. A. Filip (2016). J. Mol. Liq. 221, 271. https://doi.org/10.1016/j.molliq.2016.06.003.

    Article  CAS  Google Scholar 

  21. A. Sing, D. Jain, M. K. Upadhyay, N. Khandelwal, and H. N. Verma (2010). Digit. J. Nanomater. Biostruct. 5, 483.

    Google Scholar 

  22. L. Xing, Y. Xiahou, P. Zhang, W. Du, and H. Xia (2019). ACS Appl. Mater. Interfaces 11, 17637. https://doi.org/10.1021/acsami.9b02052.

    Article  CAS  PubMed  Google Scholar 

  23. C. Tagad, H. H. Seo, R. Tongaonkar, Y. Wook Yu, J. H. Lee, M. Dingre, A. Kulkarni, H. Fouad, S. A. Ansari, and S. H. Moh (2017). Sens. Mat. 29, 205. https://doi.org/10.18494/SAM.2017.1475.

    Article  CAS  Google Scholar 

  24. C. K. Tagad, S. R. Dugasani, R. Aiyer, S. Park, A. Kulkarni, and S. Sabharwal (2013). Sens. Actuators B: Chem. 183, 144. https://doi.org/10.1016/j.snb.2013.03.106.

    Article  CAS  Google Scholar 

  25. M. H. K. Mostafa, E. H. Ismail, K. Z. El-Baghdady, and D. Mohamed (2014). Arab. J. Chem. 7, 1131. https://doi.org/10.1016/j.arabjc.2013.04.007.

    Article  CAS  Google Scholar 

  26. S. S. Birla, S. C. Gaikwad, A. K. Gade, and M. K. Rai (2013). Sci. World J.. https://doi.org/10.1155/2013/796018.

    Article  Google Scholar 

  27. M. A. Huq (2020). Int. J. Mol. Sci. 21, 1510. https://doi.org/10.3390/ijms21041510.

    Article  CAS  PubMed Central  Google Scholar 

  28. M. Jyoti, M. Baunthiyal, and A. Singh (2016). J. Radiat. Res. Appl. Sci. 9, 217. https://doi.org/10.1016/j.jrras.2015.10.002.

    Article  CAS  Google Scholar 

  29. G. Mamidi and S. Polaki (2019). J. Appl. Chem. 8, 112.

    CAS  Google Scholar 

  30. S. K. Balavandy, K. Shameli, D. R. B. A. Biak, and Z. Z. Abidin (2014). Chem. Cent. J. 8, 11. https://doi.org/10.1186/1752-153X-8-11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. K. Anandalakshmi, J. Venugobal, and V. Ramasamy (2016). Appl. Nanosci. 6, 399. https://doi.org/10.1007/s13204-015-0449-z.

    Article  CAS  Google Scholar 

  32. V. Hospodarova, E. Singovszka, and N. Stevulova (2018). Am. J. Anal. Chem. 9, 303. https://doi.org/10.4236/ajac.2018.96023.

    Article  CAS  Google Scholar 

  33. U.S. Department of Agriculture. https://fdc.nal.usda.gov/fdc-app.html#/food-details/168154/nutrients

  34. G. M. Sangaonkar, M. P. Desai, T. D. Dongale, and K. D. Pawar (2020). Sci. Rep. 10, 2037. https://doi.org/10.1038/s41598-020-58844-4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Sirajuddin, A. Mechler, A. A. J. Torriero, A. Nafady, C.-Y. Lee, A. M. Bond, A. P. O’Mullane, and S. K. Bhargava (2010). Coll. Surf. A: Physicochem. Eng. Asp. 370, 35. https://doi.org/10.1016/j.colsurfa.2010.08.041.

    Article  CAS  Google Scholar 

  36. A. Kakaboura, M. Fragouli, C. Rahiotis, and N. Silikas (2007). J. Mater. Sci.: Mater. Med. 18, 155. https://doi.org/10.1007/s10856-006-0675-8.

    Article  CAS  Google Scholar 

  37. E. Detsri (2016). Chin. Chem. Lett. 27, 1635. https://doi.org/10.1016/j.cclet.2016.05.008.

    Article  CAS  Google Scholar 

  38. L. Katsikas, M. Gutierrez, and A. Henglein (1996). J. Phys. Chem. 100, 11203. https://doi.org/10.1021/jp960357i.

    Article  CAS  Google Scholar 

  39. Z. Sohrabijam, M. Saeidifar, and A. Zamanian (2017). Coll. Surf. B: Biointerfaces 152, 169. https://doi.org/10.1016/j.colsurfb.2017.01.028.

    Article  CAS  Google Scholar 

  40. B. Rao and R.-C. Tang (2017). Adv. Natural Sci.: Nanosci. Nanotech. 8, 015014. https://doi.org/10.1088/2043-6254/aa5983.

    Article  CAS  Google Scholar 

  41. M. J. Haider and M. S. Mehdi (2014). Int. J. Sci. Eng. Res. 5, 381.

    Google Scholar 

  42. P. Eaton, P. Quaresma, C. Soares, C. Neves, M. P. Almeida, E. Pereira, and P. West (2017). Ultramicroscopy 182, 179. https://doi.org/10.1016/j.ultramic.2017.07.001.

    Article  CAS  PubMed  Google Scholar 

  43. V. Tharmarajand and K. Pitchumani (2011). Nanoscale 3, 1166. https://doi.org/10.1039/C0NR00749H.

    Article  Google Scholar 

  44. Y. J. Fan, Z. Liu, L. Wang, and J. H. Zhan (2009). Nanoscale Res. Lett. 4, 1230. https://doi.org/10.1007/s11671-009-9387-6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. https://en.wikipedia.org/wiki/Standard_electrode_potential_(data_page)

  46. R. A. Soomro, A. Nafady, Sirajuddin, N. Memon, T. H. Sherazi, and N. H. Kalwar (2014). Talanta 130, 415. https://doi.org/10.1016/j.talanta.2014.07.023.

    Article  CAS  PubMed  Google Scholar 

  47. G. Murtaza, W. Tariq, Z. Ahmed, M. N. Tahir, and Z. Ullah (2019). Int. J. Ecol. Environ. Sci. 1, 20.

    Google Scholar 

  48. P. Buduru, B. C. S. R. Reddy, and N. V. S. Naidu (2017). Sens. Actuators B: Chem. 244, 972. https://doi.org/10.1016/j.snb.2017.01.041.

    Article  CAS  Google Scholar 

  49. K. B. Narayanan and S. S. Han (2017). Carbohydr. Polym. 160, 90. https://doi.org/10.1016/j.carbpol.2016.12.055.

    Article  CAS  PubMed  Google Scholar 

  50. I. Sk, M. A. Khan, S. Ghosh, D. Roy, S. Pal, S. Homechuadhuri, and M. D. A. Alam (2019). Nano-Struct. Nano-Object 17, 185. https://doi.org/10.1016/j.nanoso.2019.01.012.

    Article  CAS  Google Scholar 

  51. N. Cyril, J. B. George, L. Joseph, and V. P. Sylas (2019). J. Clust. Sci. 30, 459. https://doi.org/10.1007/s10876-019-01508-9.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Director HEJ Research Institute of Chemistry, ICCBS, University of Karachi, is highly thanked for provision of leadership role in publishing of this work. This work was supported for funding by King Saud University, Riyadh, Saudi Arabia via their Researchers Supporting Project (RSP-2021/79).

Author information

Authors and Affiliations

Authors

Contributions

Some authors are directly involved with investigation, formal Analysis & results while others have contributed as supervisors, drafters, reviewers, editors, financial assistant, data curators, correspondents and so on. However, all have handsome contributions for this investigation.

Corresponding author

Correspondence to Sirajuddin.

Ethics declarations

Conflict of interest

The authors declare no competing financial interests or other conflict regarding this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 586 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bhagat, S., Shaikh, H., Nafady, A. et al. Trace Level Colorimetric Hg2+ Sensor Driven by Citrus japonica Leaf Extract Derived Silver Nanoparticles: Green Synthesis and Application. J Clust Sci 33, 1865–1875 (2022). https://doi.org/10.1007/s10876-021-02109-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10876-021-02109-1

Keywords

Navigation