Skip to main content

Advertisement

Log in

Investigation on structural, electronic, thermal and thermoelectric properties of \({\hbox {Al}}_{{{0.75}}}{\hbox {B}}_{{{0.25}}}\hbox {As}\) under pressure based on density functional theory

  • Published:
Pramana Aims and scope Submit manuscript

Abstract

In this paper, structural, electronic, thermal and thermoelectric properties of \(\hbox {Al}_{\mathrm {0.75}}\hbox {B}_{\mathrm {0.25}}\)As under 0, 2, 4 and 6 GPa pressure have been investigated based on density functional theory. Values of band gaps under 4 and 6 GPa pressure have been increased. The values of group velocity have been increased with increment in pressures from 0 GPa, too. The value of band gap at 0 GPa using the GGA(PBE) exchange-correlation potential and the mBJ method are close to each other. It is due to the good muffin-tin radius selection for atoms of the compound. Thermal properties have been investigated by calculating the heat capacity at constant volume (phonon and electronic contributions) and Debye temperature. Heat capacity at constant volume has been reduced and Debye temperature increased in comparison with AlAs. In Seebeck coefficient charge carriers are holes. Electrical conductivity in most of temperatures and electronic thermal conductivity in all the temperatures show increment with the increase in temperature and pressure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. T M Tritt and M A Subramanian, Mater. Res. Soc. Bull. 31 188 (2006)

    Article  Google Scholar 

  2. O A Golikova, Phys. Status Solidi A 51, 11 (1979)

    Article  ADS  Google Scholar 

  3. N Chimot, J Even, H Folliot and S Loualiche, Physica B 364, 263 (2005)

    Article  ADS  Google Scholar 

  4. M Ferhat, A Zaoui, M Certier and H Aourag, Physica B 252, 229 (1998)

    Article  ADS  Google Scholar 

  5. B Bouhafs, H Aourag, M Ferhat and M Certier, J. Phys. Condens. Matter 11, 5781 (1999)

    Article  ADS  Google Scholar 

  6. A Zaoui and F El Haj Hassan, J. Phys. Condens. Matter 13, 253 (2001)

    Article  ADS  Google Scholar 

  7. R M Wentzcovich, K J Chang and M L Cohen, Phys. Rev. B 34, 1071 (1986)

    Article  ADS  Google Scholar 

  8. A Garcia and M L Cohen, Phys. Rev. B 47, 4215 (1993)

    Article  ADS  Google Scholar 

  9. K Boubendira, H Meradji, S Ghemid and F H Hassan, Mater. Sci. Semicond. Process 16, 2063 (2013)

    Article  Google Scholar 

  10. M A Blanco, E Francisco and V Luaña, Comput. Phys. Commun. 158, 57 (2004)

    Article  ADS  Google Scholar 

  11. R Moussa, A Abdiche, R Khenatab and S Bin Omran, Mater. Res. Express 6, 105902 (2019)

    Article  ADS  Google Scholar 

  12. R G Greene, H Luo, T Li and A L Ruoff, Phys. Rev. Lett. 72, 2045 (1994)

    Article  ADS  Google Scholar 

  13. A Otero-de-la-Roza and V Luaña, Comput. Phys. Commun. 182, 1708 (2011)

    Article  ADS  Google Scholar 

  14. A Otero-de-la-Roza, D Abbasi-Pérez and V Luaña, Comput. Phys. Commun. 182, 2232 (2011)

    Article  ADS  Google Scholar 

  15. P Blaha, G K H Madsen, D Kvasnicka and J Luitz, WIEN2K, an Augmented Plane Wave Plus Local Orbitals Program for Calculating Crystal Properties (Vienna, Austria, 2008)

    Google Scholar 

  16. J Perdew, K P Burke and M Ernzerhoff, Phys. Rev. Lett. 77, 3865 (1996)

    Article  ADS  Google Scholar 

  17. G K H Madsen and D J Singh, Comput. Phys. Commun. 175, 67 (2006)

    Article  ADS  Google Scholar 

  18. F D Murnaghan, Proc. Natl. Acad. Sci. USA 30, 244 (1944)

    Article  ADS  Google Scholar 

  19. D Koller, F Tran and P Blaha, Phys. Rev. B 83, 195134 (2011)

    Article  ADS  Google Scholar 

  20. H Kalai, B Khelifa, N Badi, H Abid, N Amrane, B Soudini and H Aourag, Mater. Chem. Phys. 39, 180 (1995)

    Article  Google Scholar 

  21. Dongguo Chen and N M Ravindra, J. Mater. Sci. 47, 5735 (2012)

    Article  ADS  Google Scholar 

  22. A Anjami, A Boochani, S M Elahi and H Akbari, Results Phys. 7, 3522 (2017)

    Article  ADS  Google Scholar 

  23. E L Shirley, Phys. Rev. B 58, 9579 (1998)

    Article  ADS  Google Scholar 

  24. A T Petit and P L Dulong, Ann. Chim. Phys. 10, 395 (1819)

    Google Scholar 

  25. I Barin, O Knacke and O Kubaschewski, Thermochemical properties of inorganic substances (Springer, Berlin-Heidelberg-New York, 1977)

    Book  Google Scholar 

  26. A F Kisomi and S J Mousavi, Pramana – J. Phys. 91: 18 (2018)

    Article  ADS  Google Scholar 

  27. S Adachi, J. Appl. Phys. 58, 81 (1985)

    Article  Google Scholar 

  28. M K Yadav and B Sanyal, J. Alloys Compd. 622, 388 (2015)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A Fazeli Kisomi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kisomi, A.F., Mousavi, S.J. & Nedaee-Shakarab, B. Investigation on structural, electronic, thermal and thermoelectric properties of \({\hbox {Al}}_{{{0.75}}}{\hbox {B}}_{{{0.25}}}\hbox {As}\) under pressure based on density functional theory. Pramana - J Phys 95, 101 (2021). https://doi.org/10.1007/s12043-021-02139-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12043-021-02139-4

Keywords

PACS Nos

Navigation