Skip to main content
Log in

Separation of tungsten and molybdenum with solvent extraction using functionalized ionic liquid tricaprylmethylammonium bis(2,4,4-trimethylpentyl)phosphinate

  • Published:
International Journal of Minerals, Metallurgy and Materials Aims and scope Submit manuscript

Abstract

Functionalized ionic liquids (FILs) as extractants were employed for the separation of tungsten and molybdenum from a sulfate solution for the first time. The effects of initial pH, extractant concentration, metal concentrations in the feed were comprehensively investigated. The results showed that tricaprylmethylammonium bis(2,4,4-trimethylpentyl)phosphinate ([A336][Cyanex272]) could selectively extract W over Mo at an initial pH value of 5.5; the best separation factor βW/Mo of 25.61 was obtained for a solution with low metal concentrations (WO3: 2.49 g/L, Mo: 1.04 g/L). The [A336][Cyanex272] system performed effectively for solutions of different W/Mo molar ratios and different metal ion concentrations in the feed. The chemical reaction between [A336][Cyanex272] and W followed the ion association mechanism, which was further proved by the Fourier-transform infrared (FTIR) spectra of loaded [A336][Cyanex272] and the free extractant. The stripping experiments indicated that 95.48% W and 100.00% Mo were stripped using a 0.20 mol/L sodium hydroxide solution. Finally, the selective extractions of W and Mo from two synthetic solutions of different high metal concentrations were obtained; the separation factor βW/Mo reached 23.24 and 17.59 for the first and second solutions, respectively. The results suggest the feasibility of [A336][Cyanex272] as an extractant for the separation of tungsten and molybdenum.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. X.S. Wu, G.Q. Zhang, L. Zeng, Q. Zhou, Z.H. Li, D. Zhang, Z.Y. Cao, W.J. Guan, Q.G. Li, and L.S. Xiao, Study on removal of molybdenum from ammonium tungstate solutions using solvent extraction with quaternary ammonium salt extractant, Hydrometallurgy, 186(2019), p. 218.

    Article  CAS  Google Scholar 

  2. J.T. Li and Z.W. Zhao, Kinetics of scheelite concentrate digestion with sulfuric acid in the presence of phosphoric acid, Hydrometallurgy, 163(2016), p. 55.

    Article  CAS  Google Scholar 

  3. Z.W. Zhao, C.F. Cao, and X.Y. Chen, Separation of macro amounts of tungsten and molybdenum by precipitation with ferrous salt, Trans. Nonferrous Met. Soc. China, 21(2011), No. 12, p. 2758.

    Article  CAS  Google Scholar 

  4. Z.W. Zhao and L.H. He, Enlightenment of geochemistry on separation of molybdenum and tungsten, Chin. J. Nonferrous Met., 24(2014), No. 6, p. 1637.

    CAS  Google Scholar 

  5. W.J. Guan, G.Q. Zhang, and C.J. Gao, Solvent extraction separation of molybdenum and tungsten from ammonium solution by H2O2-complexation, Hydrometallurgy, 127–128(2012), p. 84.

    Article  Google Scholar 

  6. T.H. Nguyen and M.S. Lee, Separation of molybdenum(VI) and tungsten(VI) from sulfate solutions by solvent extraction with LIX 63 and PC 88A, Hydrometallurgy, 155(2015), p. 51.

    Article  CAS  Google Scholar 

  7. Z.W. Zhao, W.G. Zhang, X.Y. Chen, C.F. Cao, J.T. Li, and X.H. Liu, Study on removing Mo from tungstate solution using coprecipitation adsorption method based on novel Mo sulphidation process, Can. Metall. Q., 52(2013), No. 4, p. 358.

    Article  CAS  Google Scholar 

  8. X.Y. Lu, G.S. Huo, and C.H. Liao, Separation of macro amounts of tungsten and molybdenum by ion exchange with D309 resin, Trans. Nonferrous Met. Soc. China, 24(2014), No. 9, p. 3008.

    Article  CAS  Google Scholar 

  9. Z.W. Zhao, L.L. Gao, C.F. Cao, J.T. Li, X.Y. Chen, A.L. Chen, X.H. Liu, P.M. Sun, G.S. Huo, Y.J. Li, and H.G. Li, Separation of molybdenum from tungstate solution—scavenging thiomolybdate by copper compound, Metall. Mater. Trans. B, 43(2012), No. 6, p. 1284.

    Article  CAS  Google Scholar 

  10. Z.W. Zhao, X.Y. Xu, X.Y. Chen, G.S. Huo, A.L. Chen, X.H. Liu, and H. Xu, Thermodynamics and kinetics of adsorption of molybdenum blue with D301 ion exchange resin, Trans. Non-ferrous Met. Soc. China, 22(2012), No. 3, p. 686.

    Article  Google Scholar 

  11. G.S. Huo, C. Peng, Q. Song, and X.Y. Lu, Tungsten removal from molybdate solutions using ion exchange, Hydrometalurgy, 147–148(2014), p. 217.

    Article  Google Scholar 

  12. P.C. Rout, G.K. Mishra, B. Padh, K.R. Suresh, and B. Ramachandra Reddy, Solvent extraction separation of molybdenum as thio-molybdate complex from alkaline tungsten leach liquor of spent HDS catalyst—A pilot study, Hydrometallurgy, 174(2017), p. 140.

    Article  CAS  Google Scholar 

  13. L.G. Chen and H. Bermudez, Solubility and aggregation of charged surfactants in ionic liquids, Langmuir, 28(2012), No. 2, p. 1157.

    Article  CAS  Google Scholar 

  14. X.Q. Sun, Y. Ji, F.C. Hu, B. He, J. Chen, and D.Q. Li, The inner synergistic effect of bifunctional ionic liquid extractant for solvent extraction, Talanta, 81(2010), No. 4–5, p. 1877.

    Article  CAS  Google Scholar 

  15. D. Kogelnig, A. Stojanovic, F. Jirsa, W. Körner, R. Krachler, and B.K. Keppler, Transport and separation of iron(III) from nickel(II) with the ionic liquid trihexyl(tetradecyl)phosphonium chloride, Sep. Purif. Technol., 72(2010), No. 1, p. 56.

    Article  CAS  Google Scholar 

  16. W. Wang, H.L. Yang, H.M. Cui, D.L. Zhang, Y. Liu, and J. Chen, Application of bifunctional ionic liquid extractants [A336][CA-12] and [A336][CA-100] to the lanthanum extraction and separation from rare earths in the chloride medium, Ind. Eng. Chem. Res., 50(2011), No. 12, p. 7534.

    Article  CAS  Google Scholar 

  17. A. Rout and K. Binnemans, Solvent extraction of neodymium(III) by functionalized ionic liquid trioctylmethyl-ammonium dioctyl diglycolamate in fluorine-free ionic liquid diluent, Ind. Eng. Chem. Res., 53(2014), No. 15, p. 6500.

    Article  CAS  Google Scholar 

  18. D. Kogelnig, A. Stojanovic, M. Galanski, M. Groessl, F. Jirsa, R. Krachler, and B.K. Keppler, Greener synthesis of new ammonium ionic liquids and their potential as extracting agents, Tetrahedron Lett., 49(2008), No. 17, p. 2782.

    Article  CAS  Google Scholar 

  19. L. Guo, J. Chen, L. Shen, J.P. Zhang, D.L. Zhang, and Y.F. Deng, Highly selective extraction and separation of rare earths(III) using bifunctional ionic liquid extractant, ACS Sustainable Chem. Eng., 2(2014), No. 8, p. 1968.

    Article  CAS  Google Scholar 

  20. J.P. Mikkola, P. Virtanen, and R. Sjöholm, Aliquat 336®—a versatile and affordable cation source for an entirely new family of hydrophobic ionic liquids, Green Chem., 8(2006), No. 3, art. No. 250.

  21. C. Xiao, L. Zeng, L.S. Xiao, and G.Q. Zhang, Solvent extraction of molybdenum (VI) from hydrochloric acid leach solutions using P507. part I: Extraction and mechanism, Solvent Extr. Ion Exch., 35(2017), No. 2, p. 130.

    Article  CAS  Google Scholar 

  22. Q. Sun, W. Wang, L.M. Yang, S.T. Huang, Z. Xu, Z.G. Ji, Y. Li, and Y.H.N. Hu, Separation and recovery of heavy metals from concentrated smelting wastewater by synergistic solvent extraction using a mixture of 2-hydroxy-5-nonylacetophenone oxime and bis(2, 4, 4-trimethylpentyl) -phosphinic acid, Solvent Extr. Ion Exch., 36(2018), No. 2, p. 175.

    Article  CAS  Google Scholar 

  23. Z.T. Ichlas and D.C. Ibana, Process development for the direct solvent extraction of nickel and cobalt from nitrate solution: Aluminum, cobalt, and nickel separation using Cyanex 272, Int. J. Miner. Metall. Mater., 24(2017), No. 1, p. 37.

    Article  CAS  Google Scholar 

  24. X.Q. Sun, Y. Ji, Y. Liu, J. Chen, and D.Q. Li, An engineeringpurpose preparation strategy for ammonium-type ionic liquid with high purity, AIChE J., 56(2009), No. 4, p. 989.

    Google Scholar 

  25. J.L. Zhang, Z.W. Zhao, X.Y. Chen, and X.H. Liu, Thermodynamic analysis for separation of tungsten and molybdenum in W-Mo-H2O system, Chin. J. Nonferrous Met., 23(2013), No. 5, p. 1463.

    CAS  Google Scholar 

  26. C. Xiao, L.S. Xiao, Z.Y. Cao, and L. Zeng, Study on removal of tungsten from molybdate solutions, Can. Metall. Q., 54(2015), No. 4, p. 490.

    Article  CAS  Google Scholar 

  27. P. Nekovář and D. Schrötterová, Extraction of V(V), Mo(VI) and W(VI) polynuclear species by primene JMT, Chem. Eng. J., 79(2000), No. 3, p. 229.

    Article  Google Scholar 

  28. X.Q. Sun, Y. Ji, L.N. Zhang, J. Chen, and D.Q. Li, Separation of cobalt and nickel using inner synergistic extraction from bifunctional ionic liquid extractant (Bif-ILE), J. Hazard. Mater., 182(2010), No. 1–3, p. 447.

    Article  CAS  Google Scholar 

  29. Z.H. Li, G.Q. Zhang, W.J. Guan, L. Zeng, L.S. Xiao, Q.G. Li, Z.Y. Cao, and X.Y. Lu, Separation of tungsten from molybdate using solvent extraction with primary amine N1923, Hydrometallurgy, 175(2018), p. 203.

    Article  CAS  Google Scholar 

  30. A. Davantès, D. Costa, and G Lefèvre, Infrared study of (poly)tungstate ions in solution and sorbed into layered double hydroxides: Vibrational calculations and in situ analysis, J. Phys. Chem. C, 119(2015), No. 22, p. 12356.

    Article  Google Scholar 

  31. Y.H. Cao, H.J. Wang, H.Z. Liu, and Z.G. Gao, A new process for molybdenum-tungsten extraction from high pressure leaching solution of crude molybdenum-tungsten oxide concentrate, Rare Met. Cem. Carbides, 41(2013), No. 1, p. 17.

    CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (No. 51504225).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to De-zhou Wei.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cao, F., Wang, W., Wei, Dz. et al. Separation of tungsten and molybdenum with solvent extraction using functionalized ionic liquid tricaprylmethylammonium bis(2,4,4-trimethylpentyl)phosphinate. Int J Miner Metall Mater 28, 1769–1776 (2021). https://doi.org/10.1007/s12613-020-2172-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12613-020-2172-3

Keywords

Navigation