Skip to main content
Log in

Therapeutic potential of ginsenoside Rg3 and Rf for Huntington’s disease

  • Published:
In Vitro Cellular & Developmental Biology - Animal Aims and scope Submit manuscript

Abstract

Ginseng is a popular herbal medicine and known to have protective and therapeutic effects in various diseases. Ginsenosides are active gradients representing the diverse pharmacological efficacy of ginseng. Huntington’s disease (HD) is incurable genetic disorder associated with mutant huntingtin (mHtt) aggregation in the central nervous system. This study was conducted to investigate the effects of ginsenoside Rg3 and Rf on mHtt aggregation, cell viability, mitochondrial function, and apoptotic molecules on HD model. To investigate the effect of ginsenosides on HD, neural stem cells were isolated from the R6/2 mouse brain and used as a cellular model of HD. Nuclear aggregation of mHtt was measured by immunocytochemistry, and expressions of mitochondrial biogenesis and apoptotic molecules were investigated by western blot. As a result, the number of mHtt aggregates positive cells has decreased by ginsenoside Rg3 and Rf treatment in cellular model of HD. Mitochondrial biogenesis-related molecules such as PGC-1α and phosphorylated CREB were increased or showed increased tendency by ginsenoside Rg3 and Rf. Apoptotic molecules, p53, Bax, and cleaved caspase-3, were down-regulated by treatment of ginsenoside Rg3 and Rf. In addition, Lysotracker staining result showed that cellular lysosomal content was reduced by ginsenoside Rg3 and Rf. Given that ginsenoside Rg3 and Rf have the potential to reduce mHtt aggregation and cellular apoptosis, these ginsenosides can be possible therapeutic candidates for treating HD phenotypes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.

Similar content being viewed by others

References

  • Ahn S, Siddiqi MH, Aceituno VC, Simu SY, Yang DC (2016) Suppression of MAPKs/NF-kappaB activation induces intestinal anti-inflammatory action of ginsenoside Rf in HT-29 and RAW264.7 Cells. Immunol Invest 45:439–449

    Article  CAS  PubMed  Google Scholar 

  • Andrew SE, Goldberg YP, Kremer B, Telenius H, Theilmann J, Adam S, Starr E, Squitieri F, Lin B, Kalchman MA et al (1993) The relationship between trinucleotide (CAG) repeat length and clinical features of Huntington’s disease. Nat Genet 4:398–403

    Article  CAS  PubMed  Google Scholar 

  • Ang-Lee MK, Moss J, Yuan CS (2001) Herbal medicines and perioperative care. JAMA 286:208–216

    Article  CAS  PubMed  Google Scholar 

  • Assinewe VA, Baum BR, Gagnon D, Arnason JT (2003) Phytochemistry of wild populations of Panax quinquefolius L. (North American ginseng). J Agric Food Chem 51:4549–4553

    Article  CAS  PubMed  Google Scholar 

  • Attele AS, Wu JA, Yuan CS (1999) Ginseng pharmacology: multiple constituents and multiple actions. Biochem Pharmacol 58:1685–1693

    Article  CAS  PubMed  Google Scholar 

  • Brewer GJ, Torricelli JR, Evege EK, Price PJ (1993) Optimized survival of hippocampal neurons in B27-supplemented Neurobasal, a new serum-free medium combination. J Neurosci Res 35:567–576

    Article  CAS  PubMed  Google Scholar 

  • Bursch W (2001) The autophagosomal-lysosomal compartment in programmed cell death. Cell Death Differ 8:569–581

    Article  CAS  PubMed  Google Scholar 

  • Chen G, Li H, Zhao Y, Zhu H, Cai E, Gao Y, Liu S, Yang H, Zhang L (2017) Saponins from stems and leaves of Panax ginseng prevent obesity via regulating thermogenesis, lipogenesis and lipolysis in high-fat diet-induced obese C57BL/6 mice. Food Chem Toxicol 106:393–403

    Article  CAS  PubMed  Google Scholar 

  • Christensen LP (2009) Ginsenosides chemistry, biosynthesis, analysis, and potential health effects. Adv Food Nutr Res 55:1–99

    CAS  PubMed  Google Scholar 

  • Cui L, Jeong H, Borovecki F, Parkhurst CN, Tanese N, Krainc D (2006) Transcriptional repression of PGC-1alpha by mutant huntingtin leads to mitochondrial dysfunction and neurodegeneration. Cell 127:59–69

    Article  CAS  PubMed  Google Scholar 

  • Du Y, Fu M, Wang YT, Dong Z (2018) Neuroprotective effects of ginsenoside Rf on amyloid-beta-induced neurotoxicity in vitro and in vivo. J Alzheimers Dis 64:309–322

    Article  CAS  PubMed  Google Scholar 

  • Duyao M, Ambrose C, Myers R, Novelletto A, Persichetti F, Frontali M, Folstein S, Ross C, Franz M, Abbott M, Gray J, Conneally P, Young A, Penney J, Hollingsworth Z, Shoulson I, Lazzarini A, Falek A, Koroshetz W, Sax D, Bird E, Vonsattel J, Bonilla E, Alvir J, Bickham Conde J, Cha JH, Dure L, Gomez F, Ramos M, Sanchez-Ramos J, Snodgrass S, de Young M, Wexler N, Moscowitz C, Penchaszadeh G, MacFarlane H, Anderson M, Jenkins B, Srinidhi J, Barnes G, Gusella J, MacDonald M (1993) Trinucleotide repeat length instability and age of onset in Huntington’s disease. Nat Genet 4:387–392

    Article  CAS  PubMed  Google Scholar 

  • Gu M, Gash MT, Mann VM, Javoy-Agid F, Cooper JM, Schapira AH (1996) Mitochondrial defect in Huntington’s disease caudate nucleus. Ann Neurol 39:385–389

    Article  CAS  PubMed  Google Scholar 

  • Guicciardi ME, Leist M, Gores GJ (2004) Lysosomes in cell death. Oncogene 23:2881–2890

    Article  CAS  PubMed  Google Scholar 

  • In G, Ahn NG, Bae BS, Lee MW, Park HW, Jang KH, Cho BG, Han CK, Park CK, Kwak YS (2017) In situ analysis of chemical components induced by steaming between fresh ginseng, steamed ginseng, and red ginseng. J Ginseng Res 41:361–369

    Article  PubMed  Google Scholar 

  • Jang M, Lee MJ, Kim CS, Cho IH (2013) Korean red ginseng extract attenuates 3-nitropropionic acid-induced Huntington’s-like symptoms. Evid Based Complement Alternat Med 2013:237207

    PubMed  PubMed Central  Google Scholar 

  • Kang S, Min H (2012) Ginseng, the ‘immunity boost’: the effects of Panax ginseng on immune system. J Ginseng Res 36:354–368

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim JH (2012) Cardiovascular diseases and Panax ginseng: a review on molecular mechanisms and medical applications. J Ginseng Res 36:16–26

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim EJ, Jung IH, Van Le TK, Jeong JJ, Kim NJ, Kim DH (2013) Ginsenosides Rg5 and Rh3 protect scopolamine-induced memory deficits in mice. J Ethnopharmacol 146:294–299

    Article  CAS  PubMed  Google Scholar 

  • Kim H, Park CW, Cho SH (2018) The beneficial effect of Korean red ginseng extract on atopic dermatitis patients: an 8 weeks open, noncomparative clinical study. Ann Dermatol 30:304–308

    Article  PubMed  PubMed Central  Google Scholar 

  • Kim KS, Jung Yang H, Lee IS, Kim KH, Park J, Jeong HS, Kim Y, Seok Ahn K, Na YC, Jang HJ (2015) The aglycone of ginsenoside Rg3 enables glucagon-like peptide-1 secretion in enteroendocrine cells and alleviates hyperglycemia in type 2 diabetic mice. Sci Rep 5:18325

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Landles C, Bates GP (2004) Huntingtin and the molecular pathogenesis of Huntington's disease. Fourth in molecular medicine review series. EMBO Rep 5:958–963

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee H, Gonzalez FJ, Yoon M (2006) Ginsenoside Rf, a component of ginseng, regulates lipoprotein metabolism through peroxisome proliferator-activated receptor alpha. Biochem Biophys Res Commun 339:196–203

    Article  CAS  PubMed  Google Scholar 

  • Lee KG, Son SW (2011) Efficacy of Korean red ginseng in the treatment of atopic dermatitis. J Ginseng Res 35:149–154

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee KH, Bae IY, Park SI, Park JD, Lee HG (2016a) Antihypertensive effect of Korean red ginseng by enrichment of ginsenoside Rg3 and arginine-fructose. J Ginseng Res 40:237–244

    Article  PubMed  Google Scholar 

  • Lee M, Liu T, Im W, Kim M (2016b) Exosomes from adipose-derived stem cells ameliorate phenotype of Huntington’s disease in vitro model. Eur J Neurosci 44:2114–2119

    Article  PubMed  Google Scholar 

  • Lee S, Rhee DK (2017) Effects of ginseng on stress-related depression, anxiety, and the hypothalamic-pituitary-adrenal axis. J Ginseng Res 41:589–594

    Article  PubMed  PubMed Central  Google Scholar 

  • Lee SM, Bae BS, Park HW, Ahn NG, Cho BG, Cho YL, Kwak YS (2015) Characterization of Korean Red Ginseng (Panax ginseng Meyer): history, preparation method, and chemical composition. J Ginseng Res 39:384–391

    Article  PubMed  PubMed Central  Google Scholar 

  • Lee ST, Chu K, Sim JY, Heo JH, Kim M (2008) Panax ginseng enhances cognitive performance in Alzheimer disease. Alzheimer Dis Assoc Disord 22:222–226

    Article  PubMed  Google Scholar 

  • Leone TC, Lehman JJ, Finck BN, Schaeffer PJ, Wende AR, Boudina S, Courtois M, Wozniak DF, Sambandam N, Bernal-Mizrachi C, Chen Z, Holloszy JO, Medeiros DM, Schmidt RE, Saffitz JE, Abel ED, Semenkovich CF, Kelly DP (2005) PGC-1alpha deficiency causes multi-system energy metabolic derangements: muscle dysfunction, abnormal weight control and hepatic steatosis. PLoS Biol 3:e101

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Li W, Gu C, Zhang H, Awang DV, Fitzloff JF, Fong HH, van Breemen RB (2000) Use of high-performance liquid chromatography-tandem mass spectrometry to distinguish Panax ginseng C. A. Meyer (Asian ginseng) and Panax quinquefolius L. (North American ginseng). Anal Chem 72:5417–5422

    Article  CAS  PubMed  Google Scholar 

  • Lim W, Mudge KW, Vermeylen F (2005) Effects of population, age, and cultivation methods on ginsenoside content of wild American ginseng (Panax quinquefolium). J Agric Food Chem 53:8498–8505

    Article  CAS  PubMed  Google Scholar 

  • Lin J, Wu PH, Tarr PT, Lindenberg KS, St-Pierre J, Zhang CY, Mootha VK, Jager S, Vianna CR, Reznick RM, Cui L, Manieri M, Donovan MX, Wu Z, Cooper MP, Fan MC, Rohas LM, Zavacki AM, Cinti S, Shulman GI, Lowell BB, Krainc D, Spiegelman BM (2004) Defects in adaptive energy metabolism with CNS-linked hyperactivity in PGC-1alpha null mice. Cell 119:121–135

    Article  CAS  PubMed  Google Scholar 

  • Lu JM, Yao Q, Chen C (2009) Ginseng compounds: an update on their molecular mechanisms and medical applications. Curr Vasc Pharmacol 7:293–302

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mangiarini L, Sathasivam K, Seller M, Cozens B, Harper A, Hetherington C, Lawton M, Trottier Y, Lehrach H, Davies SW, Bates GP (1996) Exon 1 of the HD gene with an expanded CAG repeat is sufficient to cause a progressive neurological phenotype in transgenic mice. Cell 87:493–506

    Article  CAS  PubMed  Google Scholar 

  • McGill JK, Beal MF (2006) PGC-1alpha, a new therapeutic target in Huntington's disease? Cell 127:465–468

    Article  CAS  PubMed  Google Scholar 

  • Milakovic T, Johnson GV (2005) Mitochondrial respiration and ATP production are significantly impaired in striatal cells expressing mutant huntingtin. J Biol Chem 280:30773–30782

    Article  CAS  PubMed  Google Scholar 

  • Nekrasov ED, Vigont VA, Klyushnikov SA, Lebedeva OS, Vassina EM, Bogomazova AN, Chestkov IV, Semashko TA, Kiseleva E, Suldina LA, Bobrovsky PA, Zimina OA, Ryazantseva MA, Skopin AY, Illarioshkin SN, Kaznacheyeva EV, Lagarkova MA, Kiselev SL (2016) Manifestation of Huntington’s disease pathology in human induced pluripotent stem cell-derived neurons. Mol Neurodegener 11:27

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Panov AV, Gutekunst CA, Leavitt BR, Hayden MR, Burke JR, Strittmatter WJ, Greenamyre JT (2002) Early mitochondrial calcium defects in Huntington's disease are a direct effect of polyglutamines. Nat Neurosci 5:731–736

    Article  CAS  PubMed  Google Scholar 

  • Qi LW, Wang CZ, Yuan CS (2011) Ginsenosides from American ginseng: chemical and pharmacological diversity. Phytochemistry 72:689–699

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Repnik U, Turk B (2010) Lysosomal-mitochondrial cross-talk during cell death. Mitochondrion 10:662–669

    Article  CAS  PubMed  Google Scholar 

  • Sawa A, Wiegand GW, Cooper J, Margolis RL, Sharp AH, Lawler JF Jr, Greenamyre JT, Snyder SH, Ross CA (1999) Increased apoptosis of Huntington disease lymphoblasts associated with repeat length-dependent mitochondrial depolarization. Nat Med 5:1194–1198

    Article  CAS  PubMed  Google Scholar 

  • Schlag EM, McIntosh MS (2006) Ginsenoside content and variation among and within American ginseng (Panax quinquefolius L.) populations. Phytochemistry 67:1510–1519

    Article  CAS  PubMed  Google Scholar 

  • Settembre C, Fraldi A, Medina DL, Ballabio A (2013) Signals from the lysosome: a control centre for cellular clearance and energy metabolism. Nat Rev Mol Cell Biol 14:283–296

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shin SS, Yoon M (2018) Korean red ginseng (Panax ginseng) inhibits obesity and improves lipid metabolism in high fat diet-fed castrated mice. J Ethnopharmacol 210:80–87

    Article  CAS  PubMed  Google Scholar 

  • St-Pierre J, Drori S, Uldry M, Silvaggi JM, Rhee J, Jager S, Handschin C, Zheng K, Lin J, Yang W, Simon DK, Bachoo R, Spiegelman BM (2006) Suppression of reactive oxygen species and neurodegeneration by the PGC-1 transcriptional coactivators. Cell 127:397–408

    Article  CAS  PubMed  Google Scholar 

  • Sugars KL, Rubinsztein DC (2003) Transcriptional abnormalities in Huntington disease. Trends Genet 19:233–238

    Article  CAS  PubMed  Google Scholar 

  • Tsunemi T, Ashe TD, Morrison BE, Soriano KR, Au J, Roque RA, Lazarowski ER, Damian VA, Masliah E, La Spada AR (2012) PGC-1alpha rescues Huntington’s disease proteotoxicity by preventing oxidative stress and promoting TFEB function. Sci Transl Med 4:142ra197

    Article  CAS  Google Scholar 

  • Van Kampen J, Robertson H, Hagg T, Drobitch R (2003) Neuroprotective actions of the ginseng extract G115 in two rodent models of Parkinson’s disease. Exp Neurol 184:521–529

    Article  PubMed  Google Scholar 

  • Walton MR, Dragunow I (2000) Is CREB a key to neuronal survival? Trends Neurosci 23:48–53

    Article  CAS  PubMed  Google Scholar 

  • Weydt P, Pineda VV, Torrence AE, Libby RT, Satterfield TF, Lazarowski ER, Gilbert ML, Morton GJ, Bammler TK, Strand AD, Cui L, Beyer RP, Easley CN, Smith AC, Krainc D, Luquet S, Sweet IR, Schwartz MW, La Spada AR (2006) Thermoregulatory and metabolic defects in Huntington's disease transgenic mice implicate PGC-1alpha in Huntington's disease neurodegeneration. Cell Metab 4:349–362

    Article  CAS  PubMed  Google Scholar 

  • Wu J, Jeong HK, Bulin SE, Kwon SW, Park JH, Bezprozvanny I (2009) Ginsenosides protect striatal neurons in a cellular model of Huntington's disease. J Neurosci Res 87:1904–1912

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu XF, Gao Y, Xu SY, Liu H, Xue X, Zhang Y, Zhang H, Liu MN, Xiong H, Lin RC, Li XR (2018) Remarkable impact of steam temperature on ginsenosides transformation from fresh ginseng to red ginseng. J Ginseng Res 42:277–287

    Article  PubMed  Google Scholar 

  • Zhang Y, Liu QZ, Xing SP, Zhang JL (2016) Inhibiting effect of Endostar combined with ginsenoside Rg3 on breast cancer tumor growth in tumor-bearing mice. Asian Pac J Trop Med 9:180–183

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by the Brain Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Science, ICT & Future Planning (2016M3C7A1914002), SNUH research fund (26-2017-0030), and by a grant from the Korean Society of Ginseng funded by the Korea Ginseng Corporation (2015).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Wooseok Im or Manho Kim.

Additional information

Editor: Tetsuji Okamoto

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, M., Ban, JJ., Won, B.H. et al. Therapeutic potential of ginsenoside Rg3 and Rf for Huntington’s disease. In Vitro Cell.Dev.Biol.-Animal 57, 641–648 (2021). https://doi.org/10.1007/s11626-021-00595-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11626-021-00595-1

Keywords

Navigation