Skip to main content
Log in

Reverse orientation in the ultrasound-assisted [3 + 2]-cycloaddition reaction of nitrile imines with 3-formylchromone-Meldrum’s acid adducts

  • Original Article
  • Published:
Molecular Diversity Aims and scope Submit manuscript

Abstract

The [3 + 2]-cycloaddition reaction of nitrile imines with 2,2-dimethyl-5-[(4-oxo-4H-chromen-3-yl)methylene]-1,3-dioxane-4,6-dione tends to form the reverse-orientation products under ultrasound irradiation in EtOH in the presence of Et3N. Evidence for the structure of product 5b was obtained from single-crystal X-ray analysis.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Scheme 1
Scheme 2

Similar content being viewed by others

References

  1. Ess DH, Houk KN (2008) Theory of 1,3-dipolar cycloadditions: Distortion/interaction and frontier molecular orbital models. J Am Chem Soc 130:10187–10198. https://doi.org/10.1021/ja800009z

    Article  CAS  PubMed  Google Scholar 

  2. Shawali AS (1993) Reactions of heterocyclic compounds with nitrilimines and their precursors. Chem Rev 93:2731–2777. https://doi.org/10.1021/cr00024a007

    Article  CAS  Google Scholar 

  3. Bertrand G, Wentrup C (1994) Nitrile imines: from matrix characterization to stable compounds. Angew Chem Int Ed 33:527–545. https://doi.org/10.1002/anie.199405271

    Article  Google Scholar 

  4. Wang G, Liu X, Huang T, Kuang Y, Lin L, Feng X (2013) Asymmetric catalytic 1,3-dipolar cycloaddition reaction of nitrile imines for the synthesis of chiral spiro-pyrazoline-oxindoles. Org Lett 15:76–79. https://doi.org/10.1021/ol303097j

    Article  CAS  PubMed  Google Scholar 

  5. Begue D, Wentrup C (2014) Carbenic nitrile imines: properties and reactivity. J Org Chem 79:1418–1426. https://doi.org/10.1021/jo402875c

    Article  CAS  PubMed  Google Scholar 

  6. Nunes CM, Reva I, Fausto R, Bégué D, Wentrup C (2015) Bond-shift isomers: the co-existence of allenic and propargylic phenylnitrile imines. Chem Comm 51:14712–14715. https://doi.org/10.1039/C5CC03518J

    Article  CAS  PubMed  Google Scholar 

  7. Nunes CM, Reva I, Rosado MTS, Fausto R (2015) The quest for carbenic nitrile imines: experimental and computational characterization of C-amino nitrile imine. Eur J Org Chem 2015:7484–7493. https://doi.org/10.1002/ejoc.201501153

    Article  CAS  Google Scholar 

  8. Keri RS, Budagumpi S, Pai RK, Balakrishna RG (2014) Chromones as a privileged scaffold in drug discovery: a review. Eur J Med Chem 78:340–374. https://doi.org/10.1016/j.ejmech.2014.03.047

    Article  CAS  PubMed  Google Scholar 

  9. Gaspar A, Matos MJ, Garrido J, Uriarte E, Borges F (2014) Chromone: a valid scaffold in medicinal chemistry. Chem Rev 114:4960–4992. https://doi.org/10.1021/cr400265z

    Article  CAS  PubMed  Google Scholar 

  10. Sharma KS, Kumar S, Chand K, Kathuria A, Gupta A, Jain R (2011) An update on natural occurrence and biological activity of chromones. Curr Med Chem 18:3825–3852. https://doi.org/10.2174/092986711803414359

    Article  CAS  PubMed  Google Scholar 

  11. Santos CMM, Silva AMS (2017) An overview of 2-styrylchromones: Natural occurrence, synthesis, reactivity and biological properties. Eur J Org Chem 2017:3115–3133. https://doi.org/10.1002/ejoc.201700003

    Article  CAS  Google Scholar 

  12. Girgis AS, Farag H, Ismail NSM, George RF (2011) Synthesis, hypnotic properties and molecular modeling studies of 1,2,7,9-tetraaza-spiro[4.5]dec-2-ene-6,8,10-triones. Eur J Med Chem 46:4964–4969. https://doi.org/10.1016/j.ejmech.2011.07.058

    Article  CAS  PubMed  Google Scholar 

  13. Zaiter J, Hibot A, Hafid A, Khouili M, Neves CMB, Simões MMQ, Neves MGPMS, Faustino MAF, Dagci T, Saso L, Armagane G (2021) Evaluation of the cellular protection by novel spiropyrazole compounds in dopaminergic cell death. Eur J Med Chem 213:113140. https://doi.org/10.1016/j.ejmech.2020.113140

    Article  CAS  PubMed  Google Scholar 

  14. Monteiro A, Gonçalves LM, Santos MMM (2014) Synthesis of novel spiropyrazoline oxindoles and evaluation of cytotoxicity in cancer cell lines. Eur J Med Chem 79:266–272. https://doi.org/10.1016/j.ejmech.2014.04.023

    Article  CAS  PubMed  Google Scholar 

  15. Su Y, Ma C, Zhao Y, Yang C, Feng Y, Wang KH, Huang D, Huo C, Hu Y (2020) Regioselective synthesis of spiro naphthofuranone-pyrazoline via a [3+2] cycloaddition of benzoaurones with nitrile imines. Tetrahedron 76:131355. https://doi.org/10.1016/j.tet.2020.131355

    Article  CAS  Google Scholar 

  16. Su Y, Zhao Y, Chang B, Zhao X, Zhang R, Liu X, Huang D, Wang K-H, Huo C, Hu Y (2019) [3 + 2] Cycloaddition of para-quinone methides with nitrile imines: approach to spiro-pyrazoline-cyclohexadienones. J Org Chem 84:6719–6728. https://doi.org/10.1021/acs.joc.9b00434

    Article  CAS  PubMed  Google Scholar 

  17. Liu H, Jia H, Wang B, Xiao Y, Guo H (2017) Synthesis of spirobidihydropyrazole through double 1,3-dipolar cycloaddition of nitrilimines with allenoates. Org Lett 19:4714–4717. https://doi.org/10.1021/acs.orglett.7b01961

    Article  CAS  PubMed  Google Scholar 

  18. Dumas AM, Fillion E (2009) Meldrum’s acids and 5-alkylidene meldrum’s acids in catalytic carbon–carbon bond-forming processes. Acc Chem Res 43:440–454. https://doi.org/10.1021/ar900229z

    Article  CAS  Google Scholar 

  19. Ivanov AS (2008) Meldrum’s acid and related compounds in the synthesis of natural products and analogs. Chem Soc Rev 37:789–811. https://doi.org/10.1039/B716020H

    Article  CAS  PubMed  Google Scholar 

  20. Gerencsér J, Dormán G, Darvas F (2006) Meldrum’s acid in multicomponent reactions: applications to combinatorial and diversity-qriented synthesis. QSAR Combinatorial Sci 25:439–448. https://doi.org/10.1002/qsar.200540212

    Article  CAS  Google Scholar 

  21. Ghosh S, Jana CK (2019) Rapid access to cinnamamides and piper amides via three component coupling of arylaldehydes, amines, and Meldrum’s acid. Green Chem 21:5803–5807. https://doi.org/10.1039/C9GC02937K

    Article  CAS  Google Scholar 

  22. Lipson VV, Gorobets NY (2009) One hundred years of Meldrum’s acid: advances in the synthesis of pyridine and pyrimidine derivatives. Mol Divers 13:399–419. https://doi.org/10.1007/s11030-009-9136-x

    Article  CAS  PubMed  Google Scholar 

  23. Pair E, Cadart T, Levacher V, Briere J-F (2016) Meldrum’s acid: a useful platform in asymmetric organocatalysis. ChemCatChem 8:1882–1890. https://doi.org/10.1002/cctc.201600247

    Article  CAS  Google Scholar 

  24. Zhang M, Li T, Cui C, Song X, Chang J (2020) Stereoselective sequential spirocyclopropanation/Cloke–Wilson rearrangement reactions for synthesis of trans-β, γ-disubstituted γ-butyrolactones using alkylidene Meldrum’s acid and benzyl halides. J Org Chem 85:2266–2276. https://doi.org/10.1021/acs.joc.9b02978

    Article  CAS  PubMed  Google Scholar 

  25. Banerjee B (2017) Recent developments on ultrasound-assisted one-pot multicomponent synthesis of biologically relevant heterocycles. Ultrason Sonochem 35:15–35. https://doi.org/10.1016/j.ultsonch.2016.10.010

    Article  CAS  PubMed  Google Scholar 

  26. Nishtala VB, Nanubolu JB, Basavoju S (2017) Ultrasound-assisted rapid and efficient one-pot synthesis of furanyl spirooxindolo and spiroquinoxalinopyrrolizidines by 1,3-dipolar cycloaddition: a green protocol. Res Chem Intermed 43:1365–1381. https://doi.org/10.1007/s11164-016-2703-8

    Article  CAS  Google Scholar 

  27. da Silveira Pinto LS, de Souza MVN (2017) Sonochemistry as a general procedure for the synthesis of coumarins, including multigram synthesis. Synthesis 49:2555–2561. https://doi.org/10.1055/s-0036-1590201

    Article  CAS  Google Scholar 

  28. Hallett JP, Welton T (2011) Room-temperature ionic liquids: solvents for synthesis and catalysis. Chem Rev 111:3508–3576. https://doi.org/10.1021/cr1003248

    Article  CAS  PubMed  Google Scholar 

  29. Shaabani A, Hooshmand SE (2018) Diversity-oriented catalyst-free synthesis of pseudopeptides containing rhodanine scaffolds via a one-pot sequential isocyanide-based six-component reactions in water using ultrasound irradiation. Ultrason Sonochem 40:84–90. https://doi.org/10.1016/j.ultsonch.2017.06.030

    Article  CAS  PubMed  Google Scholar 

  30. Yavari I, Taheri Z, Sheikhi S, Bahemmat S, Halvagar MR (2021) Synthesis of thia- and thioxo-tetraazaspiro[4.4]nonenones from nitrile imines and arylidenethiohydantoins. Mol Divers 25:777–785. https://doi.org/10.1007/s11030-020-10056-8

    Article  CAS  PubMed  Google Scholar 

  31. Yavari I, Hojati M, Azad L, Halvagar MR (2018) A synthesis of spirocyclic oxazinoisoquinolines and oxazinoquinolines bearing thiazolopyrimidine moieties. Synlett 29:1024–1027. https://doi.org/10.1055/s-0037-1609302

    Article  CAS  Google Scholar 

  32. Yavari I, Baoosi L, Halvagar MR (2017) A synthesis of functionalized dihydro-1H-pyrrolizines and spiropyrrolizines via [2+3] cycloaddition reactions. Mol Divers 21:265–271. https://doi.org/10.1007/s11030-017-9725-z

    Article  CAS  PubMed  Google Scholar 

  33. Breugst M, Reissig H-U (2020) The Huisgen reaction: milestones of the 1,3-dipolar cycloaddition. Angew Chem Int Ed 59:12293–12307. https://doi.org/10.1002/anie.202003115

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank the Research Council of Tarbiat Modares University for supporting this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Issa Yavari.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 4405 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yavari, I., Fadakar, Y. Reverse orientation in the ultrasound-assisted [3 + 2]-cycloaddition reaction of nitrile imines with 3-formylchromone-Meldrum’s acid adducts. Mol Divers 26, 1141–1150 (2022). https://doi.org/10.1007/s11030-021-10240-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11030-021-10240-4

Keywords

Navigation