Skip to main content
Log in

Kinetic Evaluation of In-Situ Carbothermic Processing of Mixed Electrode Material of Discarded Li-Ion Batteries

  • Original Research Article
  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

Recycling of spent lithium-ion batteries (LIBs) for metal recovery is inevitable because of environmental and resource conservation considerations. Evaluation of the kinetics parameters is crucial for understanding the thermal response of mixed electrode material for the development of the thermal recycling process. In this study, thermal treatment of mixed electrode (anode and cathode) material resulted in an in-situ indigenous carbothermal reduction of cathode material. The thermal response of mixed electrode material was investigated at different heating rates under argon and air atmosphere. Kinetic parameters, such as the activation energy and pre-exponential factor, were evaluated using other kinetic methods. The average activation energy for the thermal dissociation of mixed electrode material under the air atmosphere is estimated as ~ 180 kJ/mol. The activation energy using different kinetic models was calculated. The product layer diffusion model was found to fit with the activation energy of 52.1, 121.4, 125.3, and 71 kJ/mol for Co, Mn, Ni, and Li recovery, respectively. The optimum product of in-situ carbothermic reduction of mixed electrode material at 900 °C, 60 minutes comprises Co, MnO, and Ni (Co: 61.6 pct, Mn: 17.8 pct, Ni: 7.1 pct, O: 13.5 pct) with a saturation magnetization of 102 emu/g.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. J. Ordoñez, E.J. Gago, and A. Girard: Renew. Sustain. Energy Rev., 2016, vol. 60, pp. 195–205.

    Article  CAS  Google Scholar 

  2. W. Wang, Y. Zhang, L. Zhang, and S. Xu: J. Clean. Prod., 2020, vol. 249, p. 119340. https://doi.org/10.1016/j.jclepro.2019.119340.

    Article  CAS  Google Scholar 

  3. S. Pindar and N. Dhawan: Metall. Res. Technol., 2020, vol. 117, p. 302. https://doi.org/10.1051/metal/2020025.

    Article  CAS  Google Scholar 

  4. H. Pinegar and Y.R. Smith: J. Sustain. Metall., 2020,. https://doi.org/10.1007/s40831-020-00265-8.

    Article  Google Scholar 

  5. S. Pindar and N. Dhawan: Trans. Ind. Inst. Met., 2020. https://doi.org/10.1007/s12666-020-01956-2.

    Article  Google Scholar 

  6. S.R. Sunil and N. Dhawan: Trans. Ind. Inst. Met., 2019, vol. 72, pp. 3035–44.

    Article  CAS  Google Scholar 

  7. K. Tang, A. Ciftja, A.M. Martinez, C. Van der Eijk, Y. Bian, S. Guo, and W. Ding: Proc. 1st Int. Symp. on Development of Rare Earths, Baotou, China, 2014, pp. 8–12.

  8. V. Innocenzi, N.M. Ippolito, I. De Michelis, M. Prisciandaro, F. Medici, and F. Vegliò: J. Power Sources, 2017, vol. 362, pp. 202–18.

    Article  CAS  Google Scholar 

  9. S. Al-Thyabat, T. Nakamura, E. Shibata, and A. Iizuka: Min. Eng., 2013, vol. 45, pp. 4–17.

    Article  CAS  Google Scholar 

  10. V. Agarwal, M.K. Khalid, A. Porvali, B.P. Wilson, and M. Lundström: Sustain. Mater. Technol., 2019, vol. 22, p. e00121.

    CAS  Google Scholar 

  11. B. Ebin, M. Petranikova, and C. Ekberg: J. Mater. Cycl. Waste Manag., 2018. https://doi.org/10.1007/s10163-018-0751-4.

    Article  Google Scholar 

  12. T. Müller and B. Friedrich: J. Power Sources, 2006, vol. 158, pp. 1498–1509.

    Article  CAS  Google Scholar 

  13. S. Mir, N. Shukla, and N. Dhawan: JOM, 2021, pp. 1–11.

  14. X. Zhong, W. Liu, J. Han, F. Jiao, W. Qin, T. Liu, and C. Zhao: Waste Manag., 2019, vol. 89, pp. 83–93.

    Article  CAS  Google Scholar 

  15. W. Wang and Y. Wu: Resour. Conser. Recycl., 2017, vol. 127, pp. 233–43.

    Article  Google Scholar 

  16. M. Assefi, S. Maroufi, Y. Yamauchi, and V. Sahajwalla: Curr. Opin. Green Sustain. Chem., 2020. https://doi.org/10.1016/j.cogsc.2020.01.005.

    Article  Google Scholar 

  17. K. Huang, J. Li, and Z. Xu: Waste Manag., 2011, vol. 31, pp. 1292–99.

    Article  CAS  Google Scholar 

  18. V.G. Lacerda, A.B. Mageste, I.J.B. Santos, L.H.M. Da Silva, and M.D.C.H. Da Silva: J. Power Sources, 2009, vol. 193, pp. 908–13.

    Article  CAS  Google Scholar 

  19. S. Pindar and N. Dhawan: J. Clean. Prod., 2021, vol. 280, p. 124144.

    Article  CAS  Google Scholar 

  20. S. Pindar and N. Dhawan: Min. Eng., 2020, vol. 159, p. 106650.

    Article  CAS  Google Scholar 

  21. T. Dolker and D. Pant: Curr. Develop. Biotechnol. Bioeng., 2020, pp. 327–39.

  22. N. Sathaiyan, V. Nandakumar, and P. Ramachandran: J. Power Sources, 2006, vol. 161, pp. 1463–68.

    Article  CAS  Google Scholar 

  23. J. Kondás, J. Jandová, and M. Nemeckova: Hydrometallurgy, 2006, vol. 84, pp. 247–49.

    Article  CAS  Google Scholar 

  24. M. Contestabile, S. Panero, and B. Scrosati: J. Power Sources, 2001, vol. 92, pp. 65–69.

    Article  CAS  Google Scholar 

  25. W.S. Chen, C.T. Liao, and K.Y. Lin: Energy Proc., 2017, vol. 107, pp. 167–74.

    Article  CAS  Google Scholar 

  26. P. Ning, Q. Meng, P. Dong, J. Duan, M. Xu, Y. Lin, and Y. Zhang: Waste Manag., 2020, vol. 103, pp. 52–60.

    Article  CAS  Google Scholar 

  27. B. Musariri, G. Akdogan, C. Dorfling, and S. Bradshaw: Min. Eng., vol. 137, pp. 108–17, 2019

    Article  CAS  Google Scholar 

  28. Y. Murakami, Y. Matsuzaki, K. Murakami, S. Hiratani, A. Shibayama, and R. Inoue: Metall. Mater. Trans. B, 2020, vol. 51B, pp. 1355–62.

    Article  CAS  Google Scholar 

  29. J. Hu, J. Zhang, H. Li, Y. Chen, and C. Wang. J. Power Sources, 2017, vol. 351, pp. 192–99.

    Article  CAS  Google Scholar 

  30. Z. Huang, J. Ruan, Z. Yuan, and R. Qiu: ACS Sustain. Chem. Eng., 2018, vol. 6, pp. 3815–22.

    Article  CAS  Google Scholar 

  31. J. Li, G. Wang, and Z. Xu: J. Hazard. Mater., 2016, vol. 302, pp. 97–104.

    Article  CAS  Google Scholar 

  32. J. Xiao, J. Li, and Z. Xu: J. Hazard. Mater., 2017, vol. 338, pp. 124–31.

    Article  CAS  Google Scholar 

  33. S. Pindar and N. Dhawan: JOM, 2019, vol. 71, pp. 4483–91.

    Article  CAS  Google Scholar 

  34. Y. Zhang, W. Wang, Q. Fang, and S. Xu: Waste Manag., 2020, vol. 102, pp. 847–55.

    Article  CAS  Google Scholar 

  35. J. Shi, C. Peng, M. Chen, Y. Li, H. Eric, L. Klemettinen, and A. Jokilaakso: JOM, 2019, vol. 71, pp. 4473–82.

    Article  CAS  Google Scholar 

  36. P. Liu, L. Xiao, Y. Tang, Y. Zhu, H. Chen, and Y. Chen: Vacuum, 2018, vol. 156, pp. 317–24.

    Article  CAS  Google Scholar 

  37. J. Yu, Y. He, Z. Ge, H. Li, W. Xie, and S. Wang: Sep. Pur. Technol., 2018, vol. 190, pp. 45–52.

    Article  CAS  Google Scholar 

  38. Y. He, T. Zhang, F. Wang, G. Zhang, W. Zhang, and J. Wang: J. Clean. Prod., 2017, vol. 143, pp. 319–25.

    Article  CAS  Google Scholar 

  39. R. Ruismäki, T. Rinne, A. Dańczak, P. Taskinen, R. Serna-Guerrero, and A. Jokilaakso: Metals, 2020, vol. 10, p. 680.

    Article  CAS  Google Scholar 

  40. S. Pindar and N. Dhawan: Sustain. Mater. Technol., 2020, vol. 25, p. e00157. https://doi.org/10.1016/j.susmat.2020.e00157.

    Article  CAS  Google Scholar 

  41. S. Pindar and N. Dhawan: Sustain. Mater. Technol., 2020, vol. 25, p. e00201. https://doi.org/10.1016/j.susmat.2020.e00201.

    Article  CAS  Google Scholar 

  42. S. Maroufi, M. Assefi, R.K. Nekouei, and V. Sahajwalla: Sustain. Mater. Technol., 2020, vol. 23, p. e00139.

    CAS  Google Scholar 

  43. S. Pindar and N. Dhawan: J. Therm. Anal. Calorim., 2020, https://doi.org/10.1007/s10973-020-10139-6.

    Article  Google Scholar 

  44. O.S. Kwon and I. Sohn: Resour. Conser. Recycl., 2020, vol. 158, p. 104809. https://doi.org/10.1016/j.resconrec.2020.104809.

    Article  Google Scholar 

  45. G. Singh, A.K. Varma, S. Almas, A. Jana, P. Mondal, and J. Seay: J. Mater. Cycles Waste Manag., 2019, vol. 21, pp. 1350–60.

    Article  CAS  Google Scholar 

  46. E. Torres-García, L.F. Ramírez-Verduzco, and J. Aburto: Waste Manag., 2020, vol. 106, pp. 203–12.

    Article  CAS  Google Scholar 

  47. H.E. Kissinger: J. Res. Nat. Bur. Stand., 1956, vol. 57, p. 217.

    Article  CAS  Google Scholar 

  48. A.K. Varma and P. Mondal: J. Energy Resour. Technol., 2016, vol. 138, p. 052205. https://doi.org/10.1115/1.4032729.

    Article  CAS  Google Scholar 

  49. L. Huang, J. Liu, Y. He, S. Sun, J. Chen, J. Sun, and J. Kuo: Bioresour. Technol., 2016, vol. 218, pp. 631–42.

    Article  CAS  Google Scholar 

  50. Y. Xu and B. Chen: Bioresour. Technol. 2013, vol. 146, pp. 485–93.

    Article  CAS  Google Scholar 

  51. J. Mao, J. Li, and Z. Xu: J. Clean. Prod., 2018, vol. 205, pp. 923–29.

    Article  CAS  Google Scholar 

  52. B. Makuza, Q. Tian, X. Guo, K. Chattopadhyay, and D. Yu: J. Power Sources, 2021, vol. 491, p. 229622.

    Article  CAS  Google Scholar 

  53. S. Pindar and N. Dhawan: Min. Metall. Explor., 2020, vol. 37, pp. 1285–95.

    Google Scholar 

  54. J. de OliveiraDemarco, J.S. Cadore, F.D.S. de Oliveira, E.H. Tanabe, and D.A. Bertuol: Hydrometallurgy, 2019, vol. 190, p. 105169.

    Article  CAS  Google Scholar 

  55. R.K. Singh and B. Ruj: Fuel, 2016, vol. 174, pp. 164–71.

    Article  CAS  Google Scholar 

  56. S. Vyazovkin and C.A. Wight: Annu. Rev. Phys. Chem., 1997, vol. 48, pp. 125–49.

    Article  CAS  Google Scholar 

  57. A. Galano, J. Aburto, J. Sadhukhan, and E. Torres-García: J. Anal. Appl. Pyrolysis, 2017, vol. 128, pp. 208–16.

    Article  CAS  Google Scholar 

  58. U. Kumar, V. Gaikwad, and V. Sahajwalla: J. Clean. Prod., 2018, vol. 192, pp. 244–51.

    Article  CAS  Google Scholar 

  59. M.S. Safarzadeh, N. Dhawan, M. Birinci, and D. Moradkhani: Hydrometallurgy, 2011, vol. 106, pp. 51–57.

    Article  CAS  Google Scholar 

  60. H. Tanvar and N. Dhawan: Miner. Process. Extr. Metall., 2019. https://doi.org/10.1080/25726641.2019.1699360.

    Article  Google Scholar 

  61. J. Hermet, M. Torrent, F. Bottin, G. Dezanneau, and G. Geneste: J. Mater. Chem. A., 2014, vol. 2, pp. 9055–66.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the Indian Institute of Technology, Roorkee, for funding under Faculty Initiation Grant Nos. FIG-100714 and MHRD-UAY-1213-MMED.

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nikhil Dhawan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted November 30, 2020; accepted May 25, 2021.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 563 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pindar, S., Dhawan, N. Kinetic Evaluation of In-Situ Carbothermic Processing of Mixed Electrode Material of Discarded Li-Ion Batteries. Metall Mater Trans B 52, 3078–3092 (2021). https://doi.org/10.1007/s11663-021-02235-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-021-02235-1

Navigation