Skip to main content
Log in

Design and Construction of a Low Loss Substrate Integrated Waveguide (SIW) for S Band and C Band Applications

  • Original Paper
  • Published:
MAPAN Aims and scope Submit manuscript

Abstract

Substrate integrated waveguide (SIW) technology has immense applications for the design of microwave components and devices. In this paper, a low loss substrate integrated waveguide (SIW) structure is designed, fabricated and experimentally tested to exploit in S band and C band applications. SIW structures are constructed by interconnecting parallel metallic surfaces with two rows of metallic vias embedded in a dielectric material. In comparison with rectangular waveguides, SIW inherits better wave guiding characteristics. Substrate integrated waveguides feature a lightweight, minimal-loss, versatile, and cost-effective approach for circuit component integration over the same substrate. The presented SIW structure is designed using RT/Duroid 5880 material, which has dielectric constant, εr = 2.2, dissipation factor, tan δ = 4 × 10−4 and height h = 0.508 mm. The insertion and return losses measured using vector network analyzer are 0.95 dB and 23 dB, respectively. Simulated and measured results are in close agreement with each other with slight variation. The insertion loss (S21) and return loss (S11) have uncertainty values of 0.51 dB and 2 dB, respectively. Suggestions for future research are also presented with an emphasis on the use of advanced materials in SIW systems for high-frequency applications with limited losses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. J.S. Hong and M.J. Lancaster, Microstrip Filters for RF/Microwave Application. Wiley Publications (2001).

    Book  Google Scholar 

  2. M.M. Mechaik, Signal attenuation in transmission lines. Quality Electronic Design, International Symposium on ISQED, pp.191–194, San Jose, California (2001).

  3. K. Wu, D. Deslandes and Y. Cassivi, The substrate integrated circuits—a new concept for high-frequency electronics and optoelectronics. TELSKIS, Serbia and Montenegro, pp. 213–218 (Oct. 2003).

  4. H. Uchimura, T. Takenoshita and M. Fujii, Development of a “laminated waveguide.” IEEE Trans. Microw. Theory Tech., 46 (1998) 2438–2443.

    Article  ADS  Google Scholar 

  5. F. Xu, Y.L. Zhang, W. Hong, K. Wu and T.J. Cui, Finite difference frequency domain algorithm for modeling guided-wave properties of substrate integrated waveguide. IEEE Trans. Microw. Theory Tech., 51 (2003) 2221–2227.

    Article  ADS  Google Scholar 

  6. K. Wu, Y.L. Zhang and W. Hong, Novel substrate integrated waveguide cavity filter with defected ground structure. IEEE Trans. Microw. Theory Tech., 53 (2005) 4.

    Article  ADS  Google Scholar 

  7. Z.-C. Hao, J.-X. Chen, X.-P. Chen and K. Wu, Compact super-wide bandpass substrate integrated waveguide (SIW) filters. IEEE Trans. Microw. Theory Tech., 53 (2005) 9.

    Google Scholar 

  8. X.C. Zhang and J. Xu, Novel Band-pass substrate integrated waveguide (SIW) filter based on complementary split-ring resonators (CSRRs). Prog. Electromagn. Res. PIERS, 72 (2007) 39–46.

    Article  Google Scholar 

  9. Y.D. Don, T. Yang and T. Itoh, Substrate integrated waveguide loaded by complementary split-ring resonators and its applications to miniaturized waveguide filters. IEEE Trans. Microw. Theory Tech., 57 (2009) 2211–2223.

    Article  ADS  Google Scholar 

  10. X.C. Zhang and J. Xu, A substrate integrated waveguide (SIW) bandpass filter using novel defected ground structure shape. Prog. Electromagn. Res. PIERS, 72 (2013) 39–46.

    Article  Google Scholar 

  11. B. Liu, W. Hong, Y. Zhang, H.J. Tang, X. Yin and K. Wu, Half mode substrate integrated waveguide 180 3-dB directional couplers. IEEE Trans. Microw. Theory Tech., 55 (2007) 2586–2592.

    Article  ADS  Google Scholar 

  12. P. Mohammadi, Low loss substrate integrated waveguide N-way power divider. Ph.D. Dissertation, Department of Electrical and Electronic Engineering, Middle East Technical University, Ankara, Turkey (2012).

  13. G. Venanzoni, D. Mencarelli, A. Morini, M. Farina, O. Losito and F. Prudenzano, Compact double-layer substrate integrated waveguide magic tee for X-band applications. Microw. Opt. Technol. Lett., 58 (2016) 932–936.

    Article  Google Scholar 

  14. L. Jin, R.M. Lee, I.D. Robertson, Design and performance of log-periodic substrate integrated waveguide slot antennas. In Proceedings of the IEEE MTT-S International Microwave Symposium Digest, Montreal, QC, Canada (17–22 June 2012).

  15. T. Zhang, W. Hong, Y. Zhang and K. Wu, Design and analysis of SIW cavity backed dual-band antennas with a dual-mode triangular-ring slot. IEEE Trans. Antennas Propag., 62 (2014) 5007–5016.

    Article  ADS  Google Scholar 

  16. M.. Bozzi, Current and future research trends in substrate integrated waveguide technology. Radioengineering, 18 (2009) 201–209.

    Google Scholar 

  17. P. Chu, W. Hong, L. Dai, H. Tan, J. Chen, Z.C. Hao, X. Zhu and K. Wu, A planar bandpass filter implemented with a hybrid structure of substrate integrated waveguide and coplanar waveguide. IEEE Trans. Microw. Theory Tech., 62 (2014) 266–274.

    Article  ADS  Google Scholar 

  18. K.W. Eccleston, Mode analysis of the corrugated substrate integrated waveguide. IEEE Trans. Microw. Theory Tech., 60 (2012) 3004–3012.

    Article  ADS  Google Scholar 

  19. F. Xu and K. Wu, Guided-wave and leakage characteristics of substrate integrated waveguide. IEEE Trans. Microw. Theory Tech., 53 (2005) 1.

    Article  Google Scholar 

  20. W. Hong, K. Wu and T.J. Cui, Investigations on the propagation characteristics of the substrate integrated waveguide. IEEE Trans. Microw. Theory Tech., 53 (2005) 53–56.

    Google Scholar 

  21. K.W. Eccleston and Senior Member, Mode analysis of the corrugated substrate integrated waveguide. IEEE Trans. Microw. Theory Tech., 60 (2012) 456–460.

    Article  Google Scholar 

  22. Dominic Deslandes, Design equations for tapered microstrip-to-substrate integrated waveguide transitions, IEEE MTT-S International Microwave Symposium digest, pp. 211–215 (June 2010).

  23. M. Bozzi, S.A. Winkler and K. Wu, Broadband and compact ridge substrate-integrated waveguides. Microw. Antennas Propag. IET, 4 (2010) 1965–1973.

    Article  Google Scholar 

  24. L. Yan, W. Hong, G. Hua, J.X. Chen, K. Wu and T.J. Cui, Simulation and experiment on SIW slot array antennas. IEEE Microw. Wirel. Compon. Lett., 14 (2004) 446–448.

    Article  Google Scholar 

  25. M. Han, G.-Q. Zhao, J.-C. Mou, P. Zheng, P. Zhou, N. Yang, A W-band substrate integrated waveguide bandpass filter, International Conference on Microwave and Millimeter Wave Technology (ICMMT), pp. 1454–1458, Shenzhen, China (2012).

  26. D. Deslandes, K. Wu, Substrate integrated waveguide leaky wave antenna concept and design considerations, In Asia-Pacific Microwave Conf. Proc. (APMC'05), Suzhou (China) (2005).

  27. Z. Wang, R. Xu, B. Yan, A covering Ka-band two-way switch filter module using a three-line and an E-plane waveguide band-pass filters, Int. J. RF Microw. Comput. Aided Eng. (2014).

  28. M. Sameri and F.H. Kashani, Design and realization of a miniaturized low loss iris bandpass filter on substrate integrated waveguide configuration. J. Electr. Electron. Eng., 3 (2015) 50–54.

    Article  Google Scholar 

  29. G. Venanzoni, D. Mencarelli, A. Morini and M. Farina, Review of substrate integrated waveguide circuits for beam-forming networks working in X-band. Appl. Sci., 9 (2019) 1–19.

    Article  Google Scholar 

  30. I. Elizabeth, R. Kumar, N. Garg et al., Measurement uncertainty evaluation in vickers hardness scaleusing law of propagation of uncertainty and Monte Carlo simulation. MAPAN-J. Metrol. Soc India, 34 (2019) 317–323.

    Google Scholar 

  31. S. Yadav and D.K. Aswal, Redefined SI units and their implications. MAPAN-J. Metrol. Soc India, 35 (2020) 1–9.

    Google Scholar 

  32. N.H. Baba, M.I. Ismail, M.T. Ali, A. Awang, M.H. Hizamel, Substrate integrated waveguide radiating bandpass filter for C-band applications, pp. 183–186 (2015). https://doi.org/10.1109/APACE.2014.7043774.

  33. A. Dahiya, D. Deshwal, Design fundamentals: iris waveguide filters versus substrate integrated waveguide (SIW) bandpass filters. Advances in Intelligent Systems and Computing, vol. 1164. Springer, Singapore (2021).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aman Dahiya.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dahiya, A., Anand, R., Sindhwani, N. et al. Design and Construction of a Low Loss Substrate Integrated Waveguide (SIW) for S Band and C Band Applications. MAPAN 36, 355–363 (2021). https://doi.org/10.1007/s12647-021-00449-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12647-021-00449-x

Keywords

Navigation