Skip to main content
Log in

Probing Optical Losses and Dispersion of Fully Guided Waves through Critical Evanescent Coupling

  • OPTICS AND LASER PHYSICS
  • Published:
JETP Letters Aims and scope Submit manuscript

Surface waves such as plasmon, exciton, or phonon polaritons as well as guided modes supported by various planar structures attract particular attention due to their capability of capturing and carrying the optical signals in two- and one-dimensional systems. An important characteristic of such waves is their dispersion \(\omega ({{k}_{x}},{{k}_{y}})\), which can be designed on demand by nanostructuring of planar layered systems to obtain photonic crystal slabs and metasurfaces. Engineering the dispersion of surface waves gives rise to such exciting optical effects as transition from positive to negative refraction or from elliptic to hyperbolic dispersion, self-collimation, and diffraction-free propagation of surface waves. Along with the real part of the wave vector responsible for the phase of a propagating surface wave, a crucially important parameter for the applications is its propagation length that is related to the intrinsic losses of the mode. We propose an experimental approach allowing for the extraction of the full complex dispersion of optical surface waves and guided modes. The method relies on angle-resolved attenuated total internal reflection spectroscopy. In such a setup, scanning the air gap between the sample and a solid immersion lens yields controllable tuning of the coupling between the surface waves and the free space. In the experiment, we identify the regime of critical coupling of light to waveguide modes of a planar silicon slab and use it to extract their intrinsic losses and thus the propagation lengths in a broad spectral range. Our approach is a powerful tool for studies of light and hybrid light-matter surface waves of various kinds and may find its applications in the development of on-chip optoelectronic and nanophotonic devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. J. Polo, T. Mackay, and A. Lakhtakia, Electromagnetic Surface Waves: A Modern Perspective (Elsevier, Waltham, MA, 2013).

    Google Scholar 

  2. M. L. Calvo and V. Lakshminarayanan, Optical Waveguides: From Theory to Applied Technologies (CRC, London, UK, 2018).

    Book  Google Scholar 

  3. H. A. Haus, Waves and Fields in Optoelectronics (Prentice-Hall, Englewood Cliffs, NJ, 1984).

    Google Scholar 

  4. F. Bonaccorso, Z. Sun, T. Hasan, and A. Ferrari, Nat. Photon. 4, 611 (2010).

    Article  ADS  Google Scholar 

  5. T. Tamir, G. Griffel, and H. L. Bertoni, Guided-Wave Optoelectronics: Device Characterization, Analysis, and Design (Springer, Boston, MA, 2013).

    Google Scholar 

  6. E. A. Bezus, L. L. Doskolovich, D. A. Bykov, and V. A. Soifer, JETP Lett. 99, 63 (2014).

    Article  ADS  Google Scholar 

  7. Y. Liu and X. Zhang, Appl. Phys. Lett. 103, 141101 (2013).

  8. O. Takayama, A. Bogdanov, and A. V. Lavrinenko, J. Phys.: Condens. Matter 29, 463001 (2017).

  9. Z. Guo, H. Jiang, and H. Chen, J. Appl. Phys. 127, 071101 (2020).

  10. O. V. Kotov and Y. E. Lozovik, Phys. Rev. B 100, 165424 (2019).

  11. V. Lousse, W. Suh, O. Kilic, S. Kim, O. Solgaard, and S. Fan, Opt. Express 12, 1575 (2004).

    Article  ADS  Google Scholar 

  12. Z. Liu, S. Tibuleac, D. Shin, P. Young, and R. Magnusson, Opt. Lett. 23, 1556 (1998).

    Article  ADS  Google Scholar 

  13. A. Christ, S. Tikhodeev, N. Gippius, J. Kuhl, and H. Giessen, Phys. Rev. Lett. 91, 183901 (2003).

  14. H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Springer, Berlin, 1988).

    Book  Google Scholar 

  15. S. A. Maier, Plasmonics: Fundamentals and Applications (Springer, New York, 2007).

    Book  Google Scholar 

  16. D. A. Bykov, L. L. Doskolovich, and V. A. Soifer, JETP Lett. 95, 6 (2012).

    Article  ADS  Google Scholar 

  17. A. Otto, Zeitschr. Phys. A 216, 398 (1968).

    ADS  Google Scholar 

  18. M. Galli, M. Belotti, D. Bajoni, M. Patrini, G. Guizzetti, D. Gerace, M. Agio, L. Andreani, and Y. Chen, Phys. Rev. B 70, 081307 (2004).

  19. M. Galli, D. Bajoni, M. Patrini, G. Guizzetti, D. Gerace, L. Andreani, M. Belotti, and Y. Chen, Phys. Rev. B 72, 125322 (2005).

  20. A. Samusev, I. Mukhin, R. Malureanu, O. Takayama, D. V. Permyakov, I. Sinev, D. Baranov, O. Yermakov, I. Iorsh, A. Bogdanov, and A. Lavrinenko, Opt. Express 25, 32631 (2017).

    Article  ADS  Google Scholar 

  21. D. Permyakov, I. S. Sinev, S. Sychev, A. S. Gudovskikh, A. Bogdanov, A. Lavrinenko, and A. Samusev, JETP Lett. 107, 10 (2018).

    Article  ADS  Google Scholar 

  22. D. Pidgayko, I. Sinev, D. Permyakov, S. Sychev, F. Hey-roth, V. Rutckaia, J. Schilling, A. Lavrinenko, A. Bogdanov, and A. Samusev, ACS Photon. 6, 510 (2018).

  23. J. Schoenwald, E. Burstein, and J. Elson, Solid State Commun. 12, 185 (1973).

    Article  ADS  Google Scholar 

  24. P. Dawson, B. Puygranier, and J. Goudonnet, Phys. Rev. B 63, 205410 (2001).

  25. M. Haruna, Y. Segawa, and H. Nishihara, Electron. Lett. 28, 1612 (1992).

    Article  ADS  Google Scholar 

  26. L. Novotny and B. Hecht, Principles of Nano-Optics (Cambridge Univ. Press, Cambridge, UK, 2012).

    Book  Google Scholar 

  27. D.-Z. A. Chen and G. Chen, Appl. Phys. Lett. 91, 121906 (2007).

  28. B. Neuner III, D. Korobkin, C. Fietz, D. Carole, G. Ferro, and G. Shvets, Opt. Lett. 34, 2667 (2009).

    Article  ADS  Google Scholar 

  29. M. R. Querry, Optical Constants of Minerals and Other Materials from the Millimeter to the Ultraviolet (Chem. Res., Developm. Eng. Center, US Army Armament, 1987).

  30. L. Li, J. Opt. Soc. Am. A 14, 2758 (1997).

    Article  ADS  Google Scholar 

  31. L. Li, J. Opt. A 5, 345 (2003).

    Article  ADS  Google Scholar 

  32. L. Li, in Mathematical Modeling in Optical Science (-SIAM, Philadelphia, PA, 2001), p. 111.

    Google Scholar 

  33. N-BK7 SCHOTTR, Schott Optics Glass Catalogue Datasheet No. 517642.251 (2017).

  34. C. Schinke, P. Christian Peest, J. Schmidt, R. Brendel, K. Bothe, M. Vogt, I. Kröger, S. Winter, A. Schirmacher, S. Lim, H. Nguyen, and D. MacDonald, AIP Adv. 5, 067168 (2015).

  35. K. Pufahl, N. C. Passler, N. B. Grosse, M. Wolf, U. Wog-gon, and A. Paarmann, Appl. Phys. Lett. 113, 161103 (2018).

Download references

ACKNOWLEDGMENTS

We are grateful to Prof. Isabelle Staude for raising the problem, to Dr. Ivan Mukhin for the sputtering of the silicon film, and to Dr. Andrey Bogdanov for fruitful discussions.

Funding

This work was supported by the Russian Science Foundation (project no. 19-72-00176).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to D. V. Permyakov or A. K. Samusev.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Permyakov, D.V., Kondratiev, V.I., Pidgayko, D.A. et al. Probing Optical Losses and Dispersion of Fully Guided Waves through Critical Evanescent Coupling. Jetp Lett. 113, 780–786 (2021). https://doi.org/10.1134/S0021364021120031

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0021364021120031

Navigation