Skip to main content
Log in

Analysis of a two-dimensional triply haptotactic model with a fusogenic oncolytic virus and syncytia

  • Published:
Zeitschrift für angewandte Mathematik und Physik Aims and scope Submit manuscript

Abstract

In this paper, we concerned with a haptotaxis system proposed as a model for fusogenic oncolytic virotherapy and syncytia, accounting for interaction between uninfected cancer cells, infected cancer cells, syncytia cancer cells, extracellular matrix and oncolytic virus. We present the global classical solution in two-dimensional bounded domains under appropriate regularity assumptions on the initial data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Alzahrani, T., Eftimie, R., Trucu, D.: Multiscale modelling of cancer response to oncolytic viral therapy. Math. Biosci. 310, 76–95 (2019)

    MathSciNet  MATH  Google Scholar 

  2. Alzahrani, T., Eftimie, R., Trucu, D.: Multiscale moving boundary modelling of cancer interactions with a fusogenic oncolytic virus: the impact of syncytia dynamics. Math. Biosci. 323, 108296 (2020)

    MathSciNet  MATH  Google Scholar 

  3. Bellomo, N., Bellouquid, A., Tao, Y., Winkler, M.: Toward a mathematical theory of Keller–Segel models of pattern formation in biological tissues. Math. Models Methods Appl. Sci. 25, 1663–1763 (2015)

    MathSciNet  MATH  Google Scholar 

  4. Biler, P., Hebisch, W., Nadzieja, T.: The Debye system: existence and large time behavior of solutions. Nonlinear Anal. 23(9), 1189–1209 (1994)

    MathSciNet  MATH  Google Scholar 

  5. Breitbach, C.J., Parato, K., Burke, J., Hwang, T.H., Bell, J.C., Kirn, D.H.: Pexa–Vec double agent engineered vaccinia: oncolytic and active immunotherapeutic. Curr. Opin. Virol. 13, 49–54 (2015)

    Google Scholar 

  6. Brown, M.C., Dobrikova, E.Y., Dobrikov, M.I., et al.: Oncolytic polio virotherapy of cancer. Cancer 120(21), 3277–3286 (2014)

    Google Scholar 

  7. Cao, X.: Boundedness in a three-dimensional chemotaxis–haptotaxis model. Z. Angew. Math. Phys. 67, 1–13 (2016)

    MathSciNet  MATH  Google Scholar 

  8. Chaplain, M.A.J., Lolas, G.: Mathematical modelling of cancer invasion of tissue: dynamic heterogeneity. Net. Heterog. Med. 1, 399–439 (2006)

    MathSciNet  MATH  Google Scholar 

  9. Dai, F., Liu, B.: Asymptotic stability in a quasilinear chemotaxis–haptotaxis model with general logistic source and nonlinear signal production. J. Differ. Equ. 269, 10839–10918 (2020)

    MathSciNet  MATH  Google Scholar 

  10. Dai, F., Liu, B.: Global boundedness of classical solutions to a two species cancer invasion haptotaxis model with tissue remodeling. J. Math. Anal. Appl. 483, 123583 (2020)

    MathSciNet  MATH  Google Scholar 

  11. Dai, F., Liu, B.: Global boundedness for a N-dimensional two species cancer invasion haptotaxis model with tissue remodeling. Discrete Contin. Dyn. Syst. Ser. B (2021). https://doi.org/10.3934/d-cdsb.2021044

    Article  Google Scholar 

  12. Goldsmith, K., Chen, W., Johnson, D.C., Hendricks, R.L.: Infected cell protein(ICP) 47 enhances herpes simplex virus neurovirulence by blocking the \(CD8^+\) T cell response. J. Exp. Med. 187(3), 341–348 (1998)

    Google Scholar 

  13. Herrero, M.A., Velázquez, J.J.L.: A blow-up mechanism for a chemotaxis model. Ann. Scuola Norm. Super. Pisa 24, 633–683 (1997)

  14. Hillen, T., Painter, K.: A user’s guide to PDE models for chemotaxis. J. Math. Biol. 58, 183–217 (2009)

    MathSciNet  MATH  Google Scholar 

  15. Horstmann, D.: From 1970 until present: the Keller–Segel model in chemotaxis and its consequences I. Jahresber. Dtsch. Math. Ver. 105(2003), 103–165 (2003)

    MathSciNet  MATH  Google Scholar 

  16. Horstmann, D., Winkler, M.: Boundedness vs. blow-up in a chemotaxis system. J. Differ. Equ. 215, 52–107 (2005)

    MathSciNet  MATH  Google Scholar 

  17. Jin, C.: Global classical solution and boundedness to a chemotaxis–haptotaxis model with re-establishment mechanisms. Bull. Lond. Math. Soc. 50, 598–618 (2018)

    MathSciNet  MATH  Google Scholar 

  18. Jin, C.: Global classical solutions and convergence to a mathematical model for cancer cells invasion and metastatic spread. J. Differ. Equ. 269, 3987–4021 (2020)

    MathSciNet  MATH  Google Scholar 

  19. Keller, E.F., Segel, L.A.: Initiation of slime mold aggregation viewed as an instability. J. Theor. Biol. 26, 399–415 (1970)

    MathSciNet  MATH  Google Scholar 

  20. Krabbe, T., Altomonte, J.: Fusogenic viruses in oncolytic immunotherapy. Cancers 10, 216 (2018)

    Google Scholar 

  21. Lawler, S., Speranza, M., Cho, C., Chiocca, E.: Oncolytic viruses in cancer treatment: a review. JAMA Oncol. 3(6), 841–849 (2017)

    Google Scholar 

  22. Li, J., Wang, Y.: Boundedness in a haptotactic cross-diffusion system modeling oncolytic virotherapy. J. Differential Equations 270, 94–113 (2021)

    MathSciNet  MATH  Google Scholar 

  23. Li, Y., Lankeit, J.: Boundedness in a chemotaxis–haptotaxis model with nonlinear diffusion. Nonlinearity 29, 1564–1595 (2016)

    MathSciNet  MATH  Google Scholar 

  24. Li, Y., Lin, K., Mu, C.: Boundedness and asymptotic behavior of solutions to a chemotaxis–haptotaxis model in high dimensions. Appl. Math. Lett. 50, 91–97 (2015)

    MathSciNet  MATH  Google Scholar 

  25. Li, Y., Wang, W.: Boundedness in a four-dimensional attraction–repulsion chemotaxis system with logistic source. Math. Methods Appl. Sci. 41, 4936–4942 (2018)

    MathSciNet  MATH  Google Scholar 

  26. Liu, B., Ren, G.: Global existence and asymptotic behavior in a three-dimensional two-species chemotaxis–Stokes system with tensor-valued sensitivity. J. Korean Math. Soc. 57(1), 215–247 (2020)

    MathSciNet  MATH  Google Scholar 

  27. Meerani, S., Yao, Y.: Oncolytic viruses in cancer therapy. Eur. J. Sci. Res. 40(1), 156–171 (2010)

    Google Scholar 

  28. Msaouel, P., Opyrchal, M., Domingo Musibay, E., Galanis, E.: Oncolytic measles virus strains as novel anticancer agents. Expert Opin. Biol. Ther. 13(4), 483–502 (2013)

    Google Scholar 

  29. Nagai, T., Senba, T., Yoshida, K.: Application of the Trudinger–Moser inequality to a parabolic system of chemotaxis. Funkc. Ekvacioj 40, 411–433 (1997)

    MathSciNet  MATH  Google Scholar 

  30. Osaki, K., Yagi, A.: Finite dimensional attractor for one-dimensional Keller–Segel equations. Funkc. Ekvacioj 44, 441–469 (2001)

    MathSciNet  MATH  Google Scholar 

  31. Pang, P.Y.H., Wang, Y.: Asymptotic behavior of solutions to a tumor angiogenesis model with chemotaxis–haptotaxis. Math. Models Methods Appl. Sci. 29, 1387–1412 (2019)

    MathSciNet  MATH  Google Scholar 

  32. Ren, G.: Boundedness and stabilization in a two-species chemotaxis system with logistic source. Z. Angew. Math. Phys. 77, 177 (2020)

    MathSciNet  MATH  Google Scholar 

  33. Ren, G.: Global boundedness and stabilization under small initial data condition in a two-dimensional chemotaxis-convection model. J. Math. Anal. Appl. 497, 124880 (2021)

    MathSciNet  MATH  Google Scholar 

  34. Ren, G., Liu, B.: Global boundedness and asymptotic behavior in a two-species chemotaxis–competition system with two signals. Nonlinear Anal. Real World Appl. 48, 288–325 (2019)

    MathSciNet  MATH  Google Scholar 

  35. Ren, G., Liu, B.: Global existence of bounded solutions for a quasilinear chemotaxis system with logistic source. Nonlinear Anal. Real World Appl. 46, 545–582 (2019)

    MathSciNet  MATH  Google Scholar 

  36. Ren, G., Liu, B.: Global boundedness and asymptotic behavior in a quasilinear attraction-repulsion chemotaxis model with nonlinear signal production and logistic-type source. Math. Models Methods Appl. Sci. 30(13), 2619–2689 (2020)

    MathSciNet  MATH  Google Scholar 

  37. Ren, G., Liu, B.: Global boundedness of solutions to a chemotaxis-fluid system with singular sensitivity and logistic source. Commun. Pure Appl. Anal. 19(7), 3843–3883 (2020)

    MathSciNet  MATH  Google Scholar 

  38. Ren, G., Liu, B.: Global dynamics for an attraction–repulsion chemotaxis model with logistic source. J. Differ. Equ. 268(8), 4320–4373 (2020)

    MathSciNet  MATH  Google Scholar 

  39. Ren, G., Liu, B.: Global existence and asymptotic behavior in a two-species chemotaxis system with logistic source. J. Differ. Equ. 269(2), 1484–1520 (2020)

    MathSciNet  MATH  Google Scholar 

  40. Ren, G., Liu, B.: Global classical solvability in a three-dimensional haptotaxis system modeling oncolytic virotherapy. Math. Methods Appl. Sci. (2021). https://doi.org/10.1002/mma.7354

  41. Ren, G., Liu, B.: Global solvability and asymptotic behavior in a two-species chemotaxis system with Lotka–Volterra competitive kinetics. Math. Models Methods Appl. Sci. (2021). https://doi.org/10.1142/S0218202521500238

  42. Tao, Y., Wang, M.: Global solution for a chemotactic–haptotactic model of cancer invasion. Nonlinearity 21, 2221–2238 (2008)

    MathSciNet  MATH  Google Scholar 

  43. Tao, Y., Wang, M.: A combined chemotaxis–haptotaxis system: the role of logistic source. SIAM J. Math. Anal. 41, 1533–1558 (2009)

  44. Tao, Y., Winkler, M.: A chemotaxis–haptotaxis model: the roles of nonlinear diffusion and logistic source. SIAM J. Math. Anal. 43, 685–704 (2011)

    MathSciNet  MATH  Google Scholar 

  45. Tao, Y., Winkler, M.: Energy-type estimates and global solvability in a two-dimensional chemotaxis–haptotaxis model with remodeling of non-diffusible attractant. J. Differ. Equ. 257, 784–815 (2014)

    MathSciNet  MATH  Google Scholar 

  46. Tao, Y., Winkler, M.: Dominance of chemotaxis in a chemotaxis–haptotaxis model. Nonlinearity 27, 1225–1239 (2014)

    MathSciNet  MATH  Google Scholar 

  47. Tao, Y., Winkler, M.: Large time behavior in a multi-dimensional chemotaxis–haptotaxis model with slow signal diffusion. SIAM J. Math. Anal. 47, 4229–4250 (2015)

    MathSciNet  MATH  Google Scholar 

  48. Tao, Y., Winkler, M.: A chemotaxis–haptotaxis system with haptoattractant remodeling: boundedness enforced by mild saturation of signal production. Commun. Pure Appl. Anal. 18, 2047–2067 (2019)

    MathSciNet  MATH  Google Scholar 

  49. Tao, Y., Winkler, M.: A critical virus production rate for blow-up suppression in a haptotaxis model for oncolytic virotherapy. Nonlinear Anal. 198, 111870 (2020)

    MathSciNet  MATH  Google Scholar 

  50. Tao, Y., Winkler, M.: A critical virus production rate for efficiency of oncolytic virotherapy. Euro. J. Appl. Math. 32(2), 301–316 (2021)

    MathSciNet  Google Scholar 

  51. Tao, Y., Winkler, M.: Critical mass for infinite-time blow-up in a haptotaxis system with nonlinear zero-order interaction. Discrete Contin. Dyn. Syst. Ser. A 41(1), 439–454 (2021)

    MathSciNet  MATH  Google Scholar 

  52. Tao, Y., Winkler, M.: Global classical solutions to a doubly haptotactic cross-diffusion system modeling oncolytic virotherapy. J. Differ. Equ. 268(9), 4973–4997 (2020)

    MathSciNet  MATH  Google Scholar 

  53. Tao, Y., Winkler, M.: Asymptotic stability of spatial homogeneity in a haptotaxis model for oncolytic virotherapy. Proc. R. Soc. Edinb. (2021). https://doi.org/10.1017/prm.2020.97

    Article  Google Scholar 

  54. Wang, Y.: Boundedness in a multi-dimensional chemotaxis–haptotaxis model with nonlinear diffusion. Appl. Math. Lett. 59, 122–126 (2016)

    MathSciNet  MATH  Google Scholar 

  55. Wang, Y.: Boundedness in the higher-dimensional chemotaxis–haptotaxis model with nonlinear diffusion. J. Differ. Equ. 260, 1975–1989 (2016)

    MathSciNet  MATH  Google Scholar 

  56. Winkler, M.: Aggregation vs. global diffusive behavior in the higher-dimensional Keller–Segel model. J. Differ. Equ. 248, 2889–2905 (2010)

    MathSciNet  MATH  Google Scholar 

  57. Winkler, M.: Finite-time blow-up in the higher-dimensional parabolic–parabolic Keller–Segel system. J. Math. Pures Appl. 100, 748–767 (2013)

    MathSciNet  MATH  Google Scholar 

  58. Winkler, M.: Singular structure formation in a degenerate haptotaxis model involving myopic diffusion. J. Math. Pures Appl. 112, 118–169 (2018)

    MathSciNet  MATH  Google Scholar 

  59. Winkler, M.: A three-dimensional Keller–Segel–Navier–Stokes system with logistic source: global weak solutions and asymptotic stabilization. J. Funct. Anal. 276(5), 1339–1401 (2019)

    MathSciNet  MATH  Google Scholar 

  60. Winkler, M.: Small-mass solutions in the two-dimensional Keller–Segel system coupled to the Navier–Stokes equations. SIAM J. Math. Anal. 52(2), 2041–2080 (2020)

    MathSciNet  MATH  Google Scholar 

  61. Winkler, M., Stinner, C.: Refined regularity and stabilization properties in a degenerate haptotaxis system. Discrete Contin. Dyn. Syst. Ser. A 40, 4039–4058 (2020)

    MathSciNet  MATH  Google Scholar 

  62. Winkler, M., Surulescu, C.: Global weak solutions to a strongly degenerate haptotaxis model. Commun. Math. Sci. 15, 1581–1616 (2017)

    MathSciNet  MATH  Google Scholar 

  63. Yu, W., Fang, H.: Clinical trials with oncolytic adenovirus in China. Curr. Cancer Drug Targets 7(2), 141–148 (2007)

    Google Scholar 

  64. Zheng, J.: Boundedness of the solution of a higher-dimensional parabolic-ODE-parabolic chemotaxis–haptotaxis model with generalized logistic source. Nonlinearity 30, 1987–2009 (2017)

    MathSciNet  MATH  Google Scholar 

  65. Zheng, P.: Global boundedness and decay for a multi-dimensional chemotaxis–haptotaxis system with nonlinear diffusion. Discrete Contin. Dyn. Syst. Ser. A 21, 2039–2056 (2016)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

Guoqiang Ren is supported by NSF of China (Grant No 12001214). Jinlong Wei is supported by NSF of China (Grant Nos 11501577 and 61773401).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jinlong Wei.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ren, G., Wei, J. Analysis of a two-dimensional triply haptotactic model with a fusogenic oncolytic virus and syncytia. Z. Angew. Math. Phys. 72, 134 (2021). https://doi.org/10.1007/s00033-021-01572-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00033-021-01572-0

Mathematics Subject Classification

Keywords

Navigation