Skip to main content

Advertisement

Log in

Fabrication of MgAlSiCrFe Low-Density High-Entropy Alloy by Mechanical Alloying and Spark Plasma Sintering

  • Original Article
  • Published:
Transactions of the Indian Institute of Metals Aims and scope Submit manuscript

Abstract

An equiatomic Mg20Al20Si20Cr20Fe20 (at.%) low-density high-entropy alloy (LDHEA) was synthesized by mechanical alloying (MA) and consolidated by spark plasma sintering (SPS) techniques. The phase identification, chemical composition, fine microstructural features and thermal stability of the mechanical alloyed powder and the spark plasma sintered (SPSed) compacts were discerned through X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and differential scanning calorimetry (DSC) techniques. The LDHEA powder after mechanical alloying for 60 h exhibited a nanocrystalline BCC phase (a = 0.2887 ± 0.005 nm) as a major one along with the minor fraction (~ 3%) of undissolved Si. The 60-h milled powder was consolidated through SPS at 800 ℃ (1073 K). The SPSed sample exhibited the presence of a major B2-type AlFe phase (cP2; a = 0.2889 nm) along with a parent disordered BCC phase and a minor amount of Al13Fe4 (mC102; a = 1.549 nm, b = 0.808 nm, c = 1.248 nm), β-Al3Mg2 (cF1168; a = 2.824 nm) and Cr5Si3 (tI32; a = 0.917 nm, c = 0.463 nm) phases. Attempts were made to explore the mechanical properties of the LDHEA through microindentation techniques. The hardness and yield strength were evaluated to be ~ 7 GPa and ~ 2100 MPa respectively. The density of the sintered sample was found to be around 4.38 g cm−3, which is around 99.98% of the theoretical density. The phases evolved during MA and SPS  were explained with the help of the thermodynamic parameters and property diagrams generated through the CALPHAD approach using Thermo-Calc software.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Shechtman D, Blech I, Gratias D, and Cahn J W, Phys Rev Lett 53 (1984) 1951.

    Article  CAS  Google Scholar 

  2. Rawat R, Tiwari A, Arun N, Nageswara Rao S V S, Pathak A P, Shadangi Y, Mukhopadhyay N K, Rao S V, and Tripathi A, J Alloys Compd (2020) 157871. https://doi.org/10.1016/j.jallcom.2020.157871.

    Article  Google Scholar 

  3. Inoue A, Acta Mater 48 (2000) 279. https://doi.org/10.1016/S1359-6454(99)00300-6.

    Article  CAS  Google Scholar 

  4. Cantor B, Chang I T H, Knight P, and Vincent A J B, Mater Sci Eng A. 375–377 (2004) 213. https://doi.org/10.1016/j.msea.2003.10.257.

    Article  CAS  Google Scholar 

  5. Mukhopadhyay N K, Curr Sci 109 (2015) 665. http://www.jstor.org/stable/24905720.

    Article  Google Scholar 

  6. Murty B S, Yeh J W, and Ranganathan S, High-Entropy Alloys, 1st ed., Butterworth Heinemann, Oxford (2014).

    Google Scholar 

  7. Yeh J W, Chen S K, Lin S J, Gan J Y, Chin T S, Shun T T, Tsau C H, and Chang S Y, Adv Eng Mater 6 (2004) 299. https://doi.org/10.1002/adem.200300567.

    Article  CAS  Google Scholar 

  8. Steurer W, Mater Charact 162 (2020) 110179. https://doi.org/10.1016/j.colsurfa.2020.124658.

    Article  CAS  Google Scholar 

  9. Shivam V, Basu J, Manna R, and Mukhopadhyay N K, Metall Mater Trans A Phys Metall Mater Sci 52 (2021) 15. https://doi.org/10.1007/s11661-021-06188-7.

    Article  CAS  Google Scholar 

  10. Jain H, Shadangi Y, Shivam V, Chakravarty D, Kumar D, Shadangi Y, Shivam V, Chakravarty D, Mukhopadhyay N K, and Kumar D, J Alloys Compd 834 (2020) 155013.

    Article  CAS  Google Scholar 

  11. Sriharitha R, Murty B S, and Kottada R S, Intermetallics 32 (2013) 119.

    Article  CAS  Google Scholar 

  12. Pandey V K, Shadangi Y, Shivam V, Basu J, Chattopadhyay K, Majumdar B, Sarma B N, and Mukhopadhyay N K, Trans Indian Inst Met 74 (2021) 33. https://doi.org/10.1007/s12666-020-02114-4.

    Article  CAS  Google Scholar 

  13. Yadav T P, Mukhopadhyay S, Mishra S S, Mukhopadhyay N K, and Srivastava O N, Philos Mag Lett 0839 (2018) 1. https://doi.org/10.1080/09500839.2017.1418539.

    Article  CAS  Google Scholar 

  14. Chae M J, Sharma A, Oh M C, and Ahn B, Met Mater Int (2020) 1. https://doi.org/10.1007/s12540-020-00823-5.

    Article  Google Scholar 

  15. Kokai T, Yachu Y, Chienchang J, Tsungshune C, Chewei T, Jienwei Y E H, Sci China Technol Sci 61 (2018) 184.

    Article  Google Scholar 

  16. Yang X, Chen S Y, Cotton J D, Zhang Y, Jom 66 (2014) 2009. https://doi.org/10.1007/s11837-014-1059-z.

    Article  CAS  Google Scholar 

  17. Youssef K M, Zaddach A J, Niu C, Irving D L, Koch C C, Mater Res Lett 3 (2014) 95. https://doi.org/10.1080/21663831.2014.985855.

    Article  CAS  Google Scholar 

  18. Gao M C, Zhang B, Guo S M, Qiao J W, and Hawk J A, Metall Mater Trans A Phys Metall Mater Sci 47 (2016) 3322. https://doi.org/10.1007/s11661-015-3091-1.

    Article  CAS  Google Scholar 

  19. Wang W H, Li H F, Qin L, Xie X H, Zhao K, Zheng Y F, and Wang Y B, Acta Biomater 9 (2013) 8561. https://doi.org/10.1016/j.actbio.2013.01.029.

    Article  CAS  Google Scholar 

  20. Li R, Gao J C, and Fan K, Mater Sci Forum 650 (2010) 265. https://doi.org/10.4028/www.scientific.net/msf.650.265.

    Article  CAS  Google Scholar 

  21. Li R, Gao J C, Fan K, Mater Sci Forum 686 (2011) 235. https://doi.org/10.4028/www.scientific.net/msf.686.235.

    Article  CAS  Google Scholar 

  22. Guo W, Neuefeind J C, Feng R, Zhang F, Hawk J A, Ren Y, Poplawsky J D, Liaw P K, Zhang C, and Gao M C, Acta Mater 146 (2018) 280. https://doi.org/10.1016/j.actamat.2017.12.061.

    Article  CAS  Google Scholar 

  23. Chauhan P, Yebaji S, Nadakuduru V N, and Shanmugasundaram T, J Alloys Compd 820 (2020) 153367. https://doi.org/10.1016/j.jallcom.2019.153367.

    Article  CAS  Google Scholar 

  24. Mishra R K, and Shahi R R, J Magn Magn Mater 516 (2020). https://doi.org/10.1016/j.jmmm.2020.167342.

    Article  CAS  Google Scholar 

  25. Parameswaran P, Rameshbabu A M, Vijayan V, Sathish Kumar G, Sakthivel C, Pargunam N, and Godwin Antony A, Met Powder Rep 75 (2020) 209. https://doi.org/10.1016/j.mprp.2019.08.001.

    Article  Google Scholar 

  26. Sharma A, Oh M C, and Ahn B, Mater Sci Eng A 797 (2020). https://doi.org/10.1016/j.msea.2020.140066.

    Article  CAS  Google Scholar 

  27. Cardoso K R, Roche V, Jorge Jr A, Antiqueira F, Zepon G, and Champion Y, J Alloys Compd 858 (2020) 158357.

    Article  Google Scholar 

  28. Strozi R B, Leiva D R, Huot J, Botta W J, and Zepon G, Int J Hydrogen Energy 46 (2021) 2351. https://doi.org/10.1016/j.ijhydene.2020.10.106.

    Article  CAS  Google Scholar 

  29. Maulik O, Patra N, Bhattacharyya D, Jha S N, and Kumar V, Solid State Commun 252 (2017) 73. https://doi.org/10.1016/j.ssc.2017.01.018.

    Article  CAS  Google Scholar 

  30. Khanchandani H, Sharma P, Kumar R, Maulik O, and Kumar V, Adv Powder Technol 27 (2016) 289. https://doi.org/10.1016/j.apt.2016.01.001.

    Article  CAS  Google Scholar 

  31. Maulik O, Kumar D, Kumar S, Fabijanic D M, and Kumar V, Intermetallics 77 (2016) 46. https://doi.org/10.1016/j.intermet.2016.07.001.

    Article  CAS  Google Scholar 

  32. Campos R P, Cuevas A C, and Muñoz R E, Mater Charact 110 (2015) 1. https://doi.org/10.1007/978-3-319-15204-2.

    Article  CAS  Google Scholar 

  33. Fida Hassan S, Nadhreen G J, Al-Jeddawi M A A, Al-Otaibi M, Philos Mag Lett 100 (2020) 171. https://doi.org/10.1080/09500839.2020.1740810.

    Article  CAS  Google Scholar 

  34. Singh N, Shadangi Y, and Mukhopadhyay N K, Trans Indian Inst Met 73 (2020) 2377. https://doi.org/10.1007/s12666-020-02039-y.

    Article  CAS  Google Scholar 

  35. Shivam V, Shadangi Y, Basu J, and Mukhopadhyay N K, J Mater Res 34 (2019) 787. https://doi.org/10.1557/jmr.2019.5.

    Article  CAS  Google Scholar 

  36. Shivam V, Basu J, Pandey V K, Shadangi Y, and Mukhopadhyay N K, Adv Powder Technol 29 (2018). https://doi.org/10.1016/j.apt.2018.06.006.

    Article  Google Scholar 

  37. Shivam V, Basu J, Shadangi Y, Singh M K, and Mukhopadhyay N K, J Alloys Compd 757 (2018). https://doi.org/10.1016/j.jallcom.2018.05.057.

    Article  Google Scholar 

  38. Shadangi Y, Sharma S, Shivam V, Basu J, Chattopadhyay K, Majumdar B, and Mukhopadhyay N K, J Alloys Compd (2020) 154258. https://doi.org/10.1016/J.JALLCOM.2020.154258.

    Article  Google Scholar 

  39. Shadangi Y, Shivam V, Singh M K, Chattopadhyay K, Basu J, and Mukhopadhyay N K, J Alloys Compd 797 (2019) 1280. https://doi.org/10.1016/J.JALLCOM.2019.05.128.

    Article  CAS  Google Scholar 

  40. Shadangi Y, Shivam V, Varalakshmi S, Basu J, Majumdar B, Mukhopadhyay N K, Shivam V, Varalakshmi S, Basu J, Chattopadhyay K, and Mukhopadhyay N K, J Alloys Compd 834 (2020) 155065.

    Article  CAS  Google Scholar 

  41. Mukhopadhyay N K, and Paufler P, Int Mater Rev 51 (2006) 209. https://doi.org/10.1179/174328006X102475.

    Article  CAS  Google Scholar 

  42. Shadangi Y, Chattopadhyay K, Rai S B, and Singh V, Surf Coatings Technol 280 (2015) 216. https://doi.org/10.1016/j.surfcoat.2015.09.014.

    Article  CAS  Google Scholar 

  43. Shadangi Y, Chattopadhyay K, and Singh V, Jom 72 (2020) 4330. https://doi.org/10.1007/s11837-020-04400-4.

    Article  CAS  Google Scholar 

  44. Basariya M R, Srivastava V C, and Mukhopadhyay N K, Philos Mag 6435 (2016) 1. https://doi.org/10.1080/14786435.2016.1204474.

    Article  CAS  Google Scholar 

  45. Raviathul Basariya M, Srivastava V C, and Mukhopadhyay N K, Mater Des 64 (2014) 542. https://doi.org/10.1016/j.matdes.2014.08.019.

    Article  CAS  Google Scholar 

  46. Zhang Y, Lu Z P, Ma S G, Liaw P K, Tang Z, Cheng Y Q, and Gao M C, MRS Commun 4 (2014) 57. https://doi.org/10.1557/mrc.2014.11.

    Article  CAS  Google Scholar 

  47. Guo S, Ng C, Lu J, and Liu C T, J Appl Phys 109 (2011) 1. https://doi.org/10.1063/1.3587228.

    Article  CAS  Google Scholar 

  48. Shivam V, Sanjana V, and Mukhopadhyay N K, Trans Indian Inst Met 73 (2020) 821. https://doi.org/10.1007/s12666-020-01892-1.

    Article  CAS  Google Scholar 

  49. Aravindh S A, Kistanov A A, Alatalo M, Kömi J, Huttula M, and Cao W, J Phys Condens Matter (2020) 1.

    Google Scholar 

  50. Gokhale A B, and Abbaschian G J, J Phase Equilibria 8 (1987) 474. https://doi.org/10.1007/BF02893156.

    Article  CAS  Google Scholar 

  51. Maulik O, and Kumar V, Mater Charact 110 (2015) 116. https://doi.org/10.1016/j.matchar.2015.10.025.

    Article  CAS  Google Scholar 

  52. Cheng P, Zhao Y, Xu X, Wang S, Sun Y, and Hou H, Mater Sci Eng A 772 (2020). https://doi.org/10.1016/j.msea.2019.138681.

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Profs. R K Mandal, BN Sarma, and Dr Joysurya Basu for stimulating discussions. The authors gratefully acknowledge help of Prof K G Prashanth in extending the spark plasma sintering facility. Authors expresss their gratitude to Dr R Manna for extending the Advanced Research Centre for Iron and Steel (ARCIS) facilities for x-ray diffraction experiment. Authors would like to thank Mr. Lalit Kumar Singh and Girish Sahu for their help for TEM and SEM examination respectively. The support from DST-FIST for TEM investigation is also thankfully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nandini Singh.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 4045 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, N., Shadangi, Y., Goud, G.S. et al. Fabrication of MgAlSiCrFe Low-Density High-Entropy Alloy by Mechanical Alloying and Spark Plasma Sintering. Trans Indian Inst Met 74, 2203–2219 (2021). https://doi.org/10.1007/s12666-021-02262-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12666-021-02262-1

Keywords

Navigation