Skip to main content
Log in

Effect of grain breakage on the compressibility of soils

  • Research Paper
  • Published:
Acta Geotechnica Aims and scope Submit manuscript

Abstract

The compression behaviour of fine-grained soils is mainly controlled by pore collapse, while the compression behaviour of sands is mainly governed by grain breakage. For soils containing both fine and coarse soil particles such as quartz and calcite grains, the compressibility may depend on both pore collapse and grain breakage. In this study, the compressibility of two natural soils reported in the literature was first analysed in this sense, showing the effect of grain breakage on the compressibility of soils. To further verify this phenomenon, high-pressure oedometer tests were carried out on a natural stiff clay containing a significant fraction of granular elements. The obtained results confirmed the significant effect of grain breakage. In order to better understand the role of fines in the grain breakage phenomenon, artificial sand–clay mixtures were prepared with different fine fractions and tested in oedometer. Results show that the compression behaviour of sand–clay mixtures can be roughly divided into three zones according to the fine fractions: at low fine fractions, the compression behaviour is governed by grain breakage; at high fine fractions, the compression behaviour is governed by the pore collapse of fines; and at medium fine fractions, both pore collapse and grain breakage affect the compression behaviour. In this last case, pore collapse occurs first, letting grains to be well in contact either directly (grain–grain contacts) or indirectly (grain–fine grain contacts) to activate the grain breakage phenomenon upon further loading. This is consistent with the identified compression behaviour of natural fine-grained soils.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. AFNOR (2005) Geotechnical Investigating and Testing, Laboratory Testing of Soils, Part 5: Incremental Loading Oedometer Test. XP CEN ISO/TS 17892-5

  2. Bauer-Plaindoux C, Tessier D, Ghoreychi M (1998) Propriétés mécaniques des roches argileuses carbonatées: importance de la relation calcite-argile. Comptes Rendus de l’Académie des Sciences-Series IIA-Earth and Planetary Science 326:231–237

    Google Scholar 

  3. Crisci E, Ferrari A, Giger SB, Laloui L (2019) Hydro-mechanical behaviour of shallow Opalinus Clay shale. Eng Geol 251:214–227

    Article  Google Scholar 

  4. Delage P (2010) A microstructure approach to the sensitivity and compressibility of some Eastern Canada sensitive clays. Géotechnique 60(5):353–368

    Article  Google Scholar 

  5. Deng YF, Cui YJ, Tang AM, Li XL, Sillen X (2012) An experimental study on the secondary deformation of Boom clay. Appl Clay Sci 59:19–25

    Article  Google Scholar 

  6. Debure M, Tournassat C, Lerouge C, Madé B, Robinet JC, Fernández AM, Grangeon S (2018) Retention of arsenic, chromium and boron on an outcropping clay-rich rock formation (the Tégulines Clay, eastern France). Sci Total Environ 642:216–229

    Article  Google Scholar 

  7. Favero V, Ferrari A, Laloui L (2016) On the hydro-mechanical behaviour of remoulded and natural Opalinus Clay shale. Eng Geol 208:128–135

    Article  Google Scholar 

  8. Feia S, Ghabezloo S, Bruchon JF, Sulem J, Canou J, Dupla JC (2014) Experimental evaluation of the pore-access size distribution of sands. Geotech Test J 37(4):613–620

    Article  Google Scholar 

  9. Ghoreychi M (1999) Comportement thermo-hydro-mécanique des argilites de l’est et son incidence sur les ouvrages souterrains. Actes des Journées scientifiques ANDRA. EDP Sciences, Les Ulis, France, pp 397–418

  10. Guéry AAC, Cormery F, Shao JF, Kondo D (2008) A micromechanical model of elastoplastic and damage behavior of a cohesive geomaterial. Int J Solids Struct 45(5):1406–1429

    Article  Google Scholar 

  11. Houben ME, Desbois G, Urai JL (2014) A comparative study of representative 2D microstructures in Shaly and Sandy facies of Opalinus Clay (Mont Terri, Switzerland) inferred form BIB-SEM and MIP methods. Mar Pet Geol 49:143–161

    Article  Google Scholar 

  12. Klinkenberg M, Kaufhold S, Dohrmann R, Siegesmund S (2009) Influence of carbonate microfabrics on the failure strength of claystones. Eng Geol 107:42–54

    Article  Google Scholar 

  13. Lee KL, Farhoomand I (1967) Compressibility and crushing of granular soil in anisotropic triaxial compression. Can Geotech J 4(1):68–86

    Article  Google Scholar 

  14. Lerouge C, Robinet JC, Debure M, Tournassat C, Bouchet A, Fernández AM, Flehoc C, Guerrot C, Kars M, Lagroix F, Landrein P, Madé B, Negrel P, Wille G, Claret F (2018) A deep alteration and oxidation profile in a shallow clay aquitard: Example of the Tégulines Clay, East Paris Basin, France. Geofluids 2018

  15. Mesri G, Godlewski PM (1977) Time and stress-compressibility interrelationship. ASCE J Geotech Eng Div 103(5):417–430

    Article  Google Scholar 

  16. Monkul MM, Ozden G (2007) Compressional behavior of clayey sand and transition fines content. Eng Geol 89:195–205

    Article  Google Scholar 

  17. Muhammed RD, Canou J, Dupla JC, Tabbagh A (2018) Evaluation of local soil-pile friction in saturated clays under cyclic loading. Soils Found 58(6):1299–1312

    Article  Google Scholar 

  18. Mun W, McCartney JS (2017) Roles of particle breakage and drainage in the isotropic compression of sand to high pressures. J Geotech Geoenviron 143(10):04017071

    Article  Google Scholar 

  19. Mesri G, Vardhanabhuti B (2009) Compression of granular materials. Can Geotech J 46(4):369–392

    Article  Google Scholar 

  20. Mohajerani M, Delage P, Monfared M, Tang AM, Sulem J, Gatmiri B (2011) Oedometric compression and swelling behaviour of the Callovo-Oxfordian argillite. Int J Rock Mech Min Sci 48(4):606–615

    Article  Google Scholar 

  21. Menaceur H (2014) Comportement thermo-hydro-mécanique et microstructure de l'argilite du Callovo-Oxfordien. Ph.D. thesis, Ecole Nationale des Ponts et Chaussées, Université Paris-Est, Champs-sur-Marne, France (in French)

  22. Nakata Y, Kato Y, Hyodo M, Hyde AF, Murata H (2001) One-dimensional compression behaviour of uniformly graded sand related to single particle crushing strength. Soils Found 41(2):39–51

    Article  Google Scholar 

  23. Polito C, Sibley E (2020) Threshold fines content and behavior of sands with nonplastic silts. Can Geotech J 57(3):462–465

    Article  Google Scholar 

  24. Qi S, Cui YJ, Chen RP, Wang HL, Lamas-Lopez F, Aimedieu P, Dupla JC, Canou J, Saussine G (2020) Influence of grain size distribution of inclusions on the mechanical behaviours of track-bed materials. Géotechnique 70(3):238–247

    Article  Google Scholar 

  25. Revil A, Grauls D, Brévart O (2002) Mechanical compaction of sand/clay mixtures. J Geophys Res: Solid Earth 107, ECV-11

  26. Shipton B, Coop MR (2012) On the compression behaviour of reconstituted soils. Soils Found 52(4):668–681

    Article  Google Scholar 

  27. Shipton B, Coop MR (2015) Transitional behaviour in sands with plastic and non-plastic fines. Soils Found 55(1):1–16

    Article  Google Scholar 

  28. Shire T, O’sullivan C, Hanley K (2016) The influence of fines content and size-ratio on the micro-scale properties of dense bimodal materials. Granul Matter 18(3):1–10

    Article  Google Scholar 

  29. Wang L (2012) Micromechanical experimental investigation and modelling of strain and damage of argillaceous rocks under combined hydric and mechanical loads. Ph.D. thesis, Ecole Polytechnique, Paris

  30. Wang HL, Cui YJ, Lamas-Lopez F, Calon N, Saussine G, Dupla JC, Canou J, Aimedieu P, Chen RP (2018) Investigation on the mechanical behavior of track-bed materials at various contents of coarse grains. Constr Build Mater 164:228–237

    Article  Google Scholar 

  31. Wright H (2001) Rôle de la minéralogie, de la texture et de la structure dans la déformation et la rupture des argilités de l'est. Ph.D. thesis, Ecole Nationale des Ponts et Chaussées, Marne-la-vallée, France (in French)

  32. Xiao Y, Liu H, Chen Q, Long L, Xiang J (2017) Evolution of particle breakage and volumetric deformation of binary granular soils under impact load. Granul Matter 19(4):1–10

    Article  Google Scholar 

  33. Xu DS, Huang M, Zhou Y (2020) One-dimensional compression behavior of calcareous sand and marine clay mixtures. Int J Geomech 20(9):04020137

    Article  Google Scholar 

  34. Yang J, Liu X, Guo Y, Liang LB (2018) A unified framework for evaluating in situ state of sand with varying fines content. Géotechnique 68(2):177–183

    Article  Google Scholar 

  35. Zhang F, Cui Y, Zeng L, Robinet JC, Conil N, Talandier J (2018) Effect of degree of saturation on the unconfined compressive strength of natural stiff clays with consideration of air entry value. Eng Geol 237:140–148

    Article  Google Scholar 

  36. Zhang F, Cui YJ, Zeng LL, Conil N (2019) Anisotropic features of natural Teguline clay. Eng Geol 261:105275

    Article  Google Scholar 

  37. Zhang X, Baudet B (2013) Particle breakage in gap-graded soil. Géotechnique Lett 3(2):72–77

    Article  Google Scholar 

  38. Zuo L, Baudet BA (2015) Determination of the transitional fines content of sand-non plastic fines mixtures. Soils Found 55(1):213–219

    Article  Google Scholar 

Download references

Acknowledgements

The support from China Scholarship Council (CSC) and Ecole des Ponts ParisTech is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu-Jun Cui.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, H., Cui, YJ., Zhang, F. et al. Effect of grain breakage on the compressibility of soils. Acta Geotech. 17, 769–778 (2022). https://doi.org/10.1007/s11440-021-01256-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11440-021-01256-z

Keywords

Navigation