Skip to main content

Advertisement

Log in

Techno-economic feasibility evaluation of a standalone solar-powered alkaline water electrolyzer considering the influence of battery energy storage system: A Korean case study

  • Energy
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

Hydrogen use is dominated by industry, with most hydrogen demand mitigated using fossil fuels; therefore, there is an eminent potential for the reduction of emissions by replacing fossil-derived hydrogen with a renewable hydrogen source. Although the emission reduction by using renewable energy presents a promising potential, its fluctuating nature is still a challenge to be addressed. In this study, considering a battery energy storage system (BESS), a dynamic operation-based techno-economic evaluation of a standalone solar photovoltaic (PV)-powered alkaline water electrolyzer (AWE) was conducted using actual solar data. Different process configurations were designed and simulated to quantify the available potential of a standalone solar-powered hydrogen production system in Korea. Furthermore, economic evaluation metrics, such as levelized cost of hydrogen (LCOH) and Monte Carlo simulation, were used to assess the potential of different configurations under variable market prices and future technology costs to estimate the future potential. The results showed that Case 1 (standalone solar-powered AWE without BESS) offers the lowest LCOH (9.55 $/kg) but with daytime operation only. Meanwhile, Case 4 (standalone solar-powered AWE with BESS) reported the second-lowest LCOH (11.67 $/kg) compared with the other cases. The results also suggested that systems with BESS can increase operational reliability by minimizing operational fluctuations and maximizing operational hours but with a slightly higher LCOH. The conducted sensitivity analysis showed that the technology cost (solar PV, AWE, and BESS) has the highest impact on LCOH, which is promising, in light of the decreasing trend in the future costs of such technologies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Abbreviations

PV:

photovoltaic

AWE:

alkaline water electrolyzer

BESS:

battery energy storage system

LCOH:

levelized cost of hydrogen

GHG:

greenhouse gas emissions

PEM:

proton exchange membrane

SAM:

system advisor model

SOC:

state of charge

Vrev :

reversible voltage

ΔG:

Gibbs energy

z:

number of electrons

F:

Faraday’s constant

Vcell :

cell voltage

Vact :

activation voltage

Vohm :

Ohmic overvoltage

s:

coefficient for overvoltage on electrodes [V]

I:

current

t:

coefficient for overvoltage on electrodes [A−1m2]

A:

area of cell

r:

parameter related to ohmic resistance of electrolyte [Ωm2]

f1 :

parameter related to Faraday efficiency [mA2cm−4]

f2 :

parameter related to Faraday efficiency

T:

Temperature [°C]

η F :

Faradays efficiency

\({\rm{H}}_2^{GEN}\) :

hydrogen generation

nc :

number of cells

η Ele :

efficiency of electrolyzer

P:

total power to AWE

PMIN :

minimum required power to AWE

PMAX :

maximum power to AWE

LHV:

lower heating value

H2Ocons :

water consumed

\({\rm{O}}_2^{GEN}\) :

oxygen generated

Q:

volumetric flowrate

MW:

mega watt

H2OIN :

water going in AWE

H2OOUT :

water going out of AWE

\({\rm{O}}_2^{IN}\) :

oxygen going in AWE

\({\rm{O}}_2^{OUT}\) :

oxygen going out of AWE

\({\rm{H}}_2^{IN}\) :

hydrogen going in AWE

\({\rm{H}}_2^{OUT}\) :

hydrogen going out of AWE

H2OCONS :

water consumed

H2OGEN :

water generated

\({\rm{H}}_2^{STO}\) :

hydrogen stored

PC :

charging power of BESS

PD :

discharging power of BESS

\({{\rm{P}}_{{C_{MIN}}}}\) :

minimum charging power of BESS

\({{\rm{P}}_{{C_{MAX}}}}\) :

maximum charging power of BESS

\({{\rm{P}}_{{D_{MIN}}}}\) :

minimum discharging power of BESS

\({{\rm{P}}_{{D_{MAX}}}}\) :

maximum discharging power of BESS

SOCMIN :

minimum state of charge

SOCMAX :

maximum state of charge

η + :

charging efficiency

η :

discharging efficiency

t:

time

Ps :

solar power

A/B:

spit fractions, A for AWE, B for BESS

PA :

power split to AWE

PC :

power split to BESS

PX :

excess power generated

CI:

cost index

IRR:

internal rate of return

FCI:

fixed capital investment

TIC:

total installed cost

TLCC:

total life cycle cost

NPVOP :

net present value of other products

D:

discount rate

n:

analysis year

L:

analysis period — 30 years

References

  1. P. A. Owusu and S. Asumadu-Sarkodie, Cogent Eng., 3, 1167990 (2016).

    Article  Google Scholar 

  2. J. S. T. Pedersen, F. D. Santos, D. van Vuuren, J. Gupta, R. E. Coelho, B.A. Aparício and R. Swart, Glob. Environ. Chang., 66, 102199 (2021).

    Article  Google Scholar 

  3. P. D. Zakkour, W. Heidug, A. Howard, R. S. Haszeldine, M. R. Allen, D. Hone and R. S. Haszeldine, Taylor Fr., 21, 63 (2020).

    Google Scholar 

  4. O. Nematollahi and K. C. Kim, Renew. Sustain. Energy Rev., 77, 566 (2017).

    Article  Google Scholar 

  5. W. Won, H. Kwon, J. H. Han and J. Kim, Renew. Energy, 103, 226 (2017).

    Article  CAS  Google Scholar 

  6. S. Cho and J. Kim, Korean J. Chem. Eng., 33, 2808 (2016).

    Article  CAS  Google Scholar 

  7. I. Renewable Energy Agency, Green hydrogen: A guide to policy making (2020).

  8. M. A. Qyyum, R. Dickson, S. F. Ali Shah, H. Niaz, A. Khan, J. J. Liu and M. Lee, Renew. Sustain. Energy Rev., 145, 110843 (2021).

    Article  CAS  Google Scholar 

  9. Y.H. Jia, J.Y. Choi, J.H. Ryu, C.H. Kim, W.K. Lee, H.T. Tran, R. H. Zhang, D. H. Ahn, T. X. Bac and T. Xuan, Korean J. Chem. Eng., 27, 1854 (2010).

    Article  CAS  Google Scholar 

  10. M. Lee and J. Kim, Korean J. Chem. Eng., 34, 1604 (2017).

    Article  CAS  Google Scholar 

  11. C. Schnuelle, T. Wassermann, D. Fuhrlaender and E. Zondervan, Int. J. Hydrogen Energy, 45, 29938 (2020).

    Article  CAS  Google Scholar 

  12. F. Dawood, G. M. Shafiullah and M. Anda, Sustainability, 12, 2047 (2020).

    Article  CAS  Google Scholar 

  13. R. Andika, Y. Kim, C. M. Yun, S. H. Yoon and M. Lee, Korean J. Chem. Eng., 36, 12 (2019).

    Article  CAS  Google Scholar 

  14. H. Niaz, B. Brigljevic, Y. B. Park, H. C. Woo and J. J. Liu, ACS Sustainable Chem. Eng., 8(22), 8305 (2020).

    Article  CAS  Google Scholar 

  15. D. Gielen, E. Taibi and R. Miranda, Hydrogen: A renewable energy perspective, International Renewable Energy Agency (IRENA) (2019).

  16. Ø. Ulleberg, Int. J. Hydrogen Energy, 28, 21 (2003).

    Article  CAS  Google Scholar 

  17. F.I. Gallardo, A.M. Ferrario, M. Lamagna, E. Bocci, D.A. Garcia and T. E. Baeza-Jeria, Int. J. Hydrogen Energy, 46, 13709 (2020).

    Article  CAS  Google Scholar 

  18. F. Gutiérrez-Martín, L. Amodio and M. Pagano, Int. J. Hydrogen Energy, In press (2020), https://doi.org/10.1016/j.ijhydene.2020.09.098.

  19. A. Mostafaeipour, H. Rezayat and M. Rezaei, Int. J. Hydrogen Energy, 45, 31599 (2020).

    Article  CAS  Google Scholar 

  20. A. Kovač, D. Marciuš and L. Budin, Int. J. Hydrogen Energy, 44, 9841 (2019).

    Article  CAS  Google Scholar 

  21. C. A. Rodriguez, M. A. Modestino, D. Psaltis and C. Moser, Energy Environ. Sci., 7, 3828 (2014).

    Article  CAS  Google Scholar 

  22. R. Bhattacharyya, A. Misra and K. C. Sandeep, Energy Convers. Manag., 133, 1 (2017).

    Article  CAS  Google Scholar 

  23. M. H. Shams, M. Shahabi, M. MansourLakouraj, M. Shafie-khah and J. P. S. Catalão, Energy, 222, 119894 (2021).

    Article  Google Scholar 

  24. A. Grimm, W. A. de Jong and G. J. Kramer, Int. J. Hydrogen Energy, 45, 22545 (2020).

    Article  CAS  Google Scholar 

  25. B. Lee, J. Heo, S. Kim, C. Sung, C. Moon, S. Moon and H. Lim, Energy Convers. Manag., 162, 139 (2018).

    Article  CAS  Google Scholar 

  26. B. Lee, H. Lee, H. S. Cho, W. C. Cho, C. H. Kim and H. Lim, Sustain. Energy Fuels, 3, 1799 (2019).

    Article  CAS  Google Scholar 

  27. M. H. Shams, M. Kia, A. Heidari and D. Zhang, Simulation, 95, 931 (2019).

    Article  Google Scholar 

  28. N. Blair, A. P. Dobos, J. Freeman, T. Neises, M. Wagner, T. Ferguson, P. Gilman and S. Janzou, NREL Rep. No. TP-6A20-61019, Natl. Renew. Energy Lab. Golden, CO, 13 (2014).

  29. A. Rabiee, A. Keane and A. Soroudi, Renew. Energy, 163, 1580 (2021).

    Article  CAS  Google Scholar 

  30. M. Cerchio, F. Gullí, M. Repetto and A. Sanflippo, Electronics, 9, 1734 (2020).

    Article  CAS  Google Scholar 

  31. A. Mayyas and M. Mann, DOE Hydrog. Fuel Cells Progr., June (2018).

  32. R. Turton, R. C. Bailie, W. B. Whiting and J. A. Shaeiwitz, Analysis, synthesis and design of chemical processes, Pearson Education (2008).

  33. J. I. Levene, M. K. Mann, R. M. Margolis and A. Milbrandt, Sol. Energy, 81, 773 (2007).

    Article  CAS  Google Scholar 

  34. L. Bertuccioli, A. Chan, D. Hart, F. Lehner, B. Madden and E. Standen, Development of Water Electrolysis in the European Union (2014).

  35. G. Parks, R. Boyd, J. Cornish, R. Remick and I. Review Panel, Hydrogen Station Compression, Storage, and Dispensing Technical Status and Costs: Systems Integration (2020).

  36. B. Brigjević, P. Fasahati and J. Jay Liu, Comput. Aided Chem. Eng., 44, 337 (2018).

    Article  Google Scholar 

  37. L. Vimmerstedt, S. Akar, C. Augustine, P. Beiter, W. Cole, D. Feld-man, P. Kurup, E. Lantz, R. Margolis, A. Ramdas, T. Stehly, C. Turchi and D. Oladosu, 2019 Annual Technology Baseline, Golden, CO (United States) (2019).

  38. J. Y. Lim, U. Safder, B. S. How, P. Ifaei and C. K. Yoo, Appl. Energy, 283, 116302 (2021).

    Article  Google Scholar 

  39. R. Dickson, J.-H. Ryu and J. J. Liu, Energy, 164, 1257 (2018).

    Article  CAS  Google Scholar 

  40. S. H. Lee, D.-H. Lim and K. Park, Appl. Sci., 10, 5391 (2020).

    Article  CAS  Google Scholar 

  41. W. Short, D. Packey and T. Holt, Renew. Energy, 95, 73 (1995).

    Google Scholar 

  42. L. Vimmerstedt, S. Akar, C. Augustine, P. Beiter, W. Cole, D. Feld-man, P. Kurup, E. Lantz, R. Margolis, A. Ramdas, T. Stehly, C. Turchi and D. Oladosu, 2019 Annual Technology Baseline, Golden, CO (2019).

  43. H. Kojima, T. Matsuda, H. Matsumoto and T. Tsujimura, J. Int. Counc. Electr. Eng., 8, 19 (2018).

    Article  Google Scholar 

  44. A. Nicita, G. Maggio, A. P. F. Andaloro and G. Squadrito, Int. J. Hydrogen Energy, 45, 11395 (2020).

    Article  CAS  Google Scholar 

  45. M. Rezaei, N. Naghdi-Khozani and N. Jafari, Renew. Energy, 147, 1044 (2020).

    Article  Google Scholar 

  46. B. Lee, J. Heo, N. H. Choi, C. Moon, S. Moon and H. Lim, Int. J. Hydrogen Energy, 42, 24612 (2017).

    Article  CAS  Google Scholar 

  47. M. Felgenhauer and T. Hamacher, Int. J. Hydrogen Energy, 40, 2084 (2015).

    Article  CAS  Google Scholar 

  48. S. Nistor, S. Dave, Z. Fan and M. Sooriyabandara, Appl. Energy, 167, 211 (2016).

    Article  CAS  Google Scholar 

  49. J. Hinkley, J. Hayward, R. Mcnaughton, R. Gillespie, M. Watt and K. Lovegrove, Cost assessment of hydrogen production from PV and electrolysis (2016).

Download references

Acknowledgements

This research was supported through a National Research Foundation of Korea (NRF) grant funded by the Ministry of Science and ICT (2019R1A2C2084709). This work was also supported by the Korea Institute of Energy Technology Evaluation and Planning (KETEP) and the Ministry of Trade, Industry, and Energy (MOTIE) of the Republic of Korea (no. 20194010201840).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jay Liu.

Supporting Information

11814_2021_819_MOESM1_ESM.pdf

Techno-economic feasibility evaluation of a standalone solar-powered alkaline water electrolyzer considering the influence of battery energy storage system: A Korean case study

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Niaz, H., Lakouraj, M.M. & Liu, J. Techno-economic feasibility evaluation of a standalone solar-powered alkaline water electrolyzer considering the influence of battery energy storage system: A Korean case study. Korean J. Chem. Eng. 38, 1617–1630 (2021). https://doi.org/10.1007/s11814-021-0819-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-021-0819-z

Keywords

Navigation