Skip to main content
Log in

Deuterium Excess of Groundwater as a Proxy for Recharge in an Evaporative Environment of a Granitic Aquifer, South India

  • Research Articles
  • Published:
Journal of the Geological Society of India

Abstract

The deuterium excess (d-excess) is a function of the composition of stable isotopes, oxygen (δ18O), and deuterium (δD) in water. It contains information about initial moisture source, evaporation effects during monsoon, and recirculation of moisture from large inland water. To meet the objectives of this study, a total of seventy-two groundwater samples were collected from bore wells during the pre and post-monsoon seasons. d-excess values vary from — 52.81 to 2.29 ‰ with a mean of −9.90 ‰ and −60.89 to 9.44 ‰ with a mean of −0.7‰ in the pre and post-monsoon seasons respectively. Based on the δ18O concentration groundwater samples are classified into three groups. Group I and II samples having high d-excess with respect to δ18O, which indicates the dry conditions in continental local water air and their source of water vapor. Most of the deep groundwater wells (> 20 m bgl) fall under these categories, which indicates low degree of evaporation. Group III samples having low d-excess values and enriched with δ18O, indicates that these waters have undergone evaporation to different extents before recharge. Most of the shallow (< 10 m bgl) and moderate groundwater wells (10–20 m bgl) fall under this category, indicating high degree of evapotranspiration originated either from unsaturated or saturated zones. The climatic water balance studies also indicate that the annual average potential evapotranspiration (PET) is higher (2131 mm) than the annual average rainfall (662 mm) in the study period. This study reveals that the diffuse rainfall recharge flows are more dominated to recharge the aquifer during the monsoon season and the past/rainfed recharge flows through preferential pathways along the gradients in the fractured zone are dominated to recharge the aquifer in the post-monsoon season. These processes play a significant role to keep the hydrological balance in areas of high evaporation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • APHA (1992) Standard Methods for the examination of water and wastewater. APHA publication, 18th ed. Washington DC.

    Google Scholar 

  • Bahir, M., Ouazar, D., Ouhamdouch, S. (2019) Hydrogeochemical mechanisms and recharge mode of the aquifers under semiarid climate from Morocco. Appl. Water Sci., v.9, pp.103.

    Article  Google Scholar 

  • Balugani, E., Lubczynski, M.W., Reyes-Acosta, L., Van der Tol, C., Frances, A.P., Metselaar, G.K. (2017) Groundwater and unsaturated zone evaporation and transpiration in a semi-arid open woodland. Jour. Hydrol., v.547, pp.54–66.

    Article  Google Scholar 

  • Ben Cheikh, N., Zouari, K., Abidi, B. (2014) A hydrogeochemical approach for identifying salinization processes in the Cenomanian-Turonian aquifer, south-eastern Tunisia. Carbonates Evaporites v.29(2), pp.193–201.

    Article  Google Scholar 

  • Carter, R.C., Alkali, A.G. (1996) Shallow groundwater in the northeast arid zone of Nigeria. Quart. Jour. Engg. Geol. Hydrogeol., v.29(4), pp.341–355.

    Article  Google Scholar 

  • Clark, I., Fritz, I. (1997) Environmental isotopes in hydrogeology. Boca Raton, NY: Lewis Publishers, p.328.

    Google Scholar 

  • Craig, H. (1961) Isotopic variation in meteoric water. Science v.133, pp.1702–1703.

    Article  Google Scholar 

  • Dansgaard, W. (1964) Stable isotopes in precipitation. Tellus, v.16, pp.436–468.

    Article  Google Scholar 

  • Francisco, J., Alcala, J.F., Canton, Y., Contreras, S., Were, A., Serrano-Ortiz, P., Puigdefa Bregas, J., Sole-Benet, A., Custodio, E., Domingo, F. (2011) Diffuse and concentrated recharge evaluation using physical and tracer techniques: results from a semiarid carbonate massif aquifer in southeastern Spain. Environ. Earth Sci., v.62(3), pp.541–557.

    Article  Google Scholar 

  • Fynn, O.F., Yidana, S.M., Chegbeleh, I.P., Yiran, G.B. (2016) Evaluating groundwater recharge processes using stable isotope signatures -The Nabogo catchment of the White Volta, Ghana. Arabian Jour. Geosci., v.9, pp.279

    Article  Google Scholar 

  • Gee, G.W., Hillel, D. (1988) Groundwater recharge in arid regions: review and critique of estimation methods. Hydrolog. Process., v.2, pp.255–266.

    Article  Google Scholar 

  • GSI (1995) Geological Quadrangle map 57 F. Printed at Info maps, Madras.

  • GSI (2004) Geological Quadrangle map 57 E. Printed the map printing division, Hyderabad.

  • Gupta, S.K., Deshpande, R.D. (2005) Groundwater isotopic investigations in India: What has been learned?. Curr. Sci., v.89(5), pp.825–835.

    Google Scholar 

  • He, J., Ma, J., Zhang, P., Tian, L., Zhu, G., Edmunda, W.M., Zhang, Q. (2012) Groundwater recharge environments and hydrogeochemical evolution in the Jiuquan Basin, Northwest China. Appl. Geochem. v.27, pp.866–878.

    Article  Google Scholar 

  • Hendriksson, N., Okkonen, J., Luoma, S. (2019) Deuterium Excess as Tracer for Seasonal Isotope Variations of Precipitation in Surficial Groundwaters. Geological Survey of Finland, (online accessed dated 31.08.2019).

  • Huang, P., Wang, X. (2017) Applying environmental isotope theory to groundwater recharge in the Jiaozuo mining area, China. Geofluids, article ID 9568349, 11 pages.

  • Issar, A., Gat, J. (1981) Environmental isotopes as a tool in hydrogeological research in an arid basin. Groundwater, v.19(5), pp.490–494.

    Article  Google Scholar 

  • Joshi, S.K., Rai, S.P., Sinha, R., Gupta, S., Densmore, A.L., Rawat, Y.S., Shekhar, S. (2018) Tracing groundwater recharge sources in the northwestern Indian alluvial aquifer using water isotopes (δ18O, δ2H and 3H). Jour. Hydrol., v.559, pp.835–847.

    Article  Google Scholar 

  • Kohfahl, C., Sostnger, C., Herrer, J.B., Meyer, H., Chacon, F.F., Pekdeger, A. (2008) Recharge sources and hydrogeochemical evolution of groundwater in semiarid and karstic environments: A field study in the Granada Basin (Southern Spain). Appl. Geochem., v.23, pp.846–862.

    Article  Google Scholar 

  • Kong, Y., Wang, K., Pu, T., Shi, X. (2019) Nonmonsoon precipitation dominates groundwater recharge beneath a monsoon-affected glacier in Tibetan plateau. Jour. Geophys. Res. Atmosph., v.124, pp.10,913–10,930.

    Article  Google Scholar 

  • Kumar, B., Rai, S.P., Kumar, S.U., Verma, S.K., Garg, P., Kumar, S.V.V., Jaiswal, R., Purendra, B.K., Kumar, S.R., Pande, N.G. (2010) Isotopic characteristics of Indian precipitation. Water Resour. Res., v.46, W12548, doi:https://doi.org/10.1029/2009WR008532.

    Article  Google Scholar 

  • Linhares, G.M.G., Moreira, R.M., Pimenta, R.C., Scarpelli, R.P., Santos dos, E.A. (2017) Stable isotope oxygen-18 and deuterium analysis in surface and groundwater of the Jequitiba Creek basin, Sete Lagoas, MG. Internation Nuclear Atlantic Conference — INAC 2017, Belo Horizonte, MG, Brazil, October 22–27, 2017.

  • Marechal, J.C., Dewandel, B., Ahmed, S., Lachassagne, P. (2007) Hard-rock aquifers characterization prior to modelling at catchment scale: An application to India. In: Krasny J. and Sharp J.M., (Eds.), Groundwater in Fractured Rocks. IAH selected papers, Taylor and Francis, London, v.9, pp.1–30.

    Google Scholar 

  • McCabe, G.J., Markstrom, S.L. (2007) A monthly water-balance model driven by a graphical user interface: USGS Open-File report 2007-1088, 6p.

  • Mook, W.G. (2001) Environmental isotopes in the hydrological cycle — principles and applications. Vol 1, International hydrological programme (IHP-V). technical documents in hydrology, no.39, UNESCO-IAEA.

  • Murad, A. (2014) Deuterium excess of groundwater as a proxy for recharge in an evaporative environment. EGU general Assembly, Geophysical Research Abstracts 16: EGU2014-38.

  • Payne, B.R. (1988) The status of isotope hydrology today. Jour. Hydrol., v.100, pp.207–237.

    Article  Google Scholar 

  • Pfahl, S., Sodemann, H. (2014) What controls deuterium excess in global precipitation. Climate of the Past, v.10, pp.771–781.

    Article  Google Scholar 

  • Puntsag, T., Mitchell, M., Campbell, J., Keein, E.S., Likens, G.E., Welker, J.M. (2016) Arctic Vortex changes alter the sources and isotopic values of precipitation in northeastern. US Scientific Report, v.6, pp.22647.

    Article  Google Scholar 

  • Qu, S., Chen, X., Wang, Y., Shi, P., Shan, S., Gou, S., Jiang, P. (2018) Isotopic characteristics of precipitation and origin of moisture sources in Hemuqiao catchment, a small watershed in the Lower Reach of Yangtze River. Water, v.10(9), pp.170.

    Article  Google Scholar 

  • Saha, S.D., Dwivedi, S.N., Roy, G.K., Reddy, D.V. (2013) Isotope-base investigation on the groundwater flow and recharge mechanism in a hard-rock aquifer system: the case of Ranchi urban area, India. Hydrogeol. Jour., v.21, pp.1101–1115.

    Article  Google Scholar 

  • Saka D, Akiti TT, Osae S, Appenteng MK, Gibrilla A (2013) Hydrogeochemistry and isotope studies of groundwater in the Ga West Municipal area, Ghana. Appl. Water Sci., v.3, pp.588.

    Article  Google Scholar 

  • Sami K (1992) Recharge mechanisms and geochemical processes in a semiarid sedimentary basin, Eastern Cape, South Africa. Jour. Hydrol., v.139, pp.27–48.

    Article  Google Scholar 

  • Samir, A.G. (2011) An assessment of recharge possibility to North-Western Sahara aquifer system (NWSAS) using environmental isotopes. Jour. Hydrol., v.398, pp.184–190.

    Article  Google Scholar 

  • Shamsuddin, M.K.N., Sulaiman, W.N.A., Ramli, M.F., Kusin, F.M., Samuding, K. (2018) Assessment of seasonal groundwater recharge and discharge using environmental stable isotopes at lower muda river basin, Malaysia. Applied Water Science, v.8, pp.120.

    Article  Google Scholar 

  • Sreedevi, P.D., Ahmed, S., Reddy, D.V. (2017) Mechanism of Fluoride and Nitrate Enrichment in Hard-rock Aquifers in Gooty Mandal, South India. Environ. Process., v.4(3), pp.625–644.

    Article  Google Scholar 

  • Thornthwaite, C.W. (1948) An approach toward a rational classification of climate. Geographical Rev., v.38(1), pp.55–94.

    Article  Google Scholar 

  • Trinidad, J.G., Guerrero, A.P., Ferreira, H.J., Capetillo, C.B., Antonio, A.H. (2017) Identifying groundwater recharge sites through environmental stable isotopes in an alluvial aquifer. Water, v.9, pp.569; doi:https://doi.org/10.3390/w9080569.

    Article  Google Scholar 

  • Yusuf, M.A., Abiye, T.A., Butler, M.J., Ibrahim, K.O. (2018) Origin and residence time of shallow groundwater resources in lagos coastal basin, South-west Nigeria: An isotopic approach. Heliyon, v.4(11), pp.e00932, doi:https://doi.org/10.1016/j.heliyon.2018.e00932.

    Article  Google Scholar 

  • Zhao, L., Xiao, H., Dong, Z., Xiao, S., Zhou, M., Cheng, G., Yin, Li, Yin, Z. (2012) Origins of groundwater inferred from isotopic patterns of the Badain Jaran desert, Northwestern China. Groundwater, v.50(5), pp.715–725.

    Article  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the Director, CSIR—National Geophysical Research Institute, for his kind permission and encouragement to publish this work. The first author gratefully acknowledges Dr. VM Tiwari, Mentor, and Director, CSIR-NGRI, and Dr. Shakeel Ahmed, Retired Chief Scientist, CSIR-NGRI, for their support and encouragement throughout this project and also to the Department of Science and Technology (DST), New Delhi, for financial assistance in the form of Women Scientists Scheme (WOS-A) Projects (Nos.SR/WOS-A/ES-20/2013(G) and SR/WOS-A/EA-08/2017(G)). The authors are thankful to the editor, associate editor and anonymous reviewers for their valuable suggestions and constructive comments that greatly enhance the quality of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. D. Sreedevi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sreedevi, P.D., Sreekanth, P.D. & Reddy, D.V. Deuterium Excess of Groundwater as a Proxy for Recharge in an Evaporative Environment of a Granitic Aquifer, South India. J Geol Soc India 97, 649–655 (2021). https://doi.org/10.1007/s12594-021-1740-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12594-021-1740-0

Navigation