Skip to main content
Log in

Stationkeeping controllers for Earth–Moon L1 and L2 libration points halo orbits

  • Review
  • Published:
Journal of the Brazilian Society of Mechanical Sciences and Engineering Aims and scope Submit manuscript

Abstract

This paper considers the dynamics of the circular restricted three-body problem (CRTBP) for the Earth–Moon system designing stationkeeping controllers at periodic orbits. Taking into account the \(L_1\) and \(L_2\) equilibrium points in this dynamics, it is constructed a family of periodic orbits in the vicinity of these libration points, called halo orbits. The orbits are constructed using an analytical approach as a first guess with a numerical method in addition, in order to correct the linear approximation procedure. Withal the stability of these libration points, trajectories are analyzed and proved to be unstable; a spacecraft moving near these points must use some correction maneuver to remain close to the nominal orbit. Two types of controllers are proposed for stationkeeping maneuvers performed by low-thrust power-limited propulsion system . The first controller is based on the linear quadratic regulator (LQR) and the second one is based on the nonlinear feedback control which uses the state-dependent Riccati equation control (SDRE). Finally, a parameters comparison analysis is performed taking into account different values of the weight matrices for both controllers at both halo orbits.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30
Fig. 31
Fig. 32

Similar content being viewed by others

References

  1. Parker Jeffrey S, Anderson Rodney L (2014) Low-energy Lunar trajectory design. John Wiley & Sons Inc

  2. Victor S (1967) Theory of orbits. The restricted problem of three bodies. Academic Press Inc

  3. Bray TA, Gouclas CL (1967) Doubly symmetric orbits about the collinear Lagrangian points. Astron J 72(2):202

    Article  Google Scholar 

  4. Moulton Forest Ray (1906) A class of periodic solutions of the problem of three bodies With application to the Lunar theory. Trans Am Math Soc 7(4):537

    Article  MathSciNet  Google Scholar 

  5. Broucke RA (1968) Periodic orbits in the restricted with three-body masses problem. Technical report, Jet Propulsion Laboratory, Pasadena, California

  6. Farquhar Robert W (1967) Station-keeping in the vicinity of collinear libration points with an application to a lunar communications problem

  7. Farquhar Robert W (1969) Future missions for libration-point satellites. Astron Aeronaut 7:52–56

    Google Scholar 

  8. Farquhar Robert W, Robert W (1970) The control and use of libration-point satellites. Natl Aeron Space Admin

  9. Farquhar Robert W (1971) The utilization of halo orbits in advanced lunar operations. Natl Aeronaut Space Admin

  10. Farquhar Robert W (1972) A halo-orbit lunar station. Astronaut Aeronaut 10:59–63

    Google Scholar 

  11. Yuan R, Jinjun S (2013) Libration point orbits for lunar global positioning systems. Adv Space Res 51(7):1065–1079

    Article  Google Scholar 

  12. Farquhar RW, Richardson David L (1976) Mission design for a halo orbiter of the Earth. In: AIAA/AAS astrodynamics conference, p 11

  13. Dunham David W, Roberts Craig E (2001) Stationkeeping techniques for libration-point satellites. J Astron Sci 49(1):127–144

    Article  MathSciNet  Google Scholar 

  14. Anderson Brian DO, Moore John B (1971) Linear optimal control

  15. Huibert K, Raphael S (1972) Linear optimal control systems. Wiley-interscience New York

  16. Bryson Arthur E Jr, Ho Yu-Chi (1975) Applied optimal control: optimization, estimation, and control. Taylor and Francis

  17. Serban R, Sang KW, Martin L, Marsden Jerrold E, Petzold Linda R, Ross Shane D, Wilson Roby S (2000) Optimal control for halo orbit missions. IFA

  18. Pearson JD (1962) Approximation methods in optimal control. Sub-optimal control. J Electron Control 13(5):453–469

  19. Andreas W, Gerald C (1975) Suboptimal control for the nonlinear quadratic regulator problem. Automatica 11(1):75–84

    Article  MathSciNet  Google Scholar 

  20. Cloutier James R, DSouza Christopher N, Mracek Curtis P (1996) Nonlinear regulation and nonlinear control via the state-dependent Riccati equation technique. In: Proceedings of the first international conference on nonlinear problems in aviation and aerospace. Embry-Riddle Aeronautical Univ. Press, pp 117–130

  21. Jayaram A, Tadi M (2006) Synchronization of chaotic systems based on SDRE method. Chaos Solit Fract 28(3):707–715

    Article  MathSciNet  Google Scholar 

  22. Tusset Angelo M, Atila Madureira B, Claudinor Bitencourt N, Mauricio Dos Santos K, Jose Manoel B (2012) Chaos suppression in NEMs resonators by using nonlinear control design. In: AIP conference proceedings, pp 183–189

  23. Manoel BJ, Grabowski BD, Marcelo TA, Madureira BÁ, de Pontes Bento Jr R (2014) Nonlinear control in an electromechanical transducer with chaotic behaviour. Meccanica 49(8):1859–1867

  24. Angelo M, Tusset Á, Madureira B, João P (2016) A non-ideally excited pendulum controlled by SDRE technique. J Br Soc Mech Sci Eng 38(8):2459–2472

    Article  Google Scholar 

  25. dos Santos Guilherme P, Balthazar José M, Janzen Frederic C, Rocha Rodrigo T, Nabarrete A, Tusset Angelo M (2018) Nonlinear dynamics and SDRE control applied to a high-performance aircraft in a longitudinal flight considering atmospheric turbulence in flight. J Sound Vib 436:273–285

  26. Simó C, Gómez G, Llibre J, Martínez R, Rodríguez J (1987) On the optimal station keeping control of halo orbits. Acta Astronaut 15(6–7):391–397

    Article  Google Scholar 

  27. Euler Edward A, Yu EY (1971) Optimal station-keeping at collinear points. J Spacecraft Rockets 8(5):513–516

    Article  Google Scholar 

  28. Rayman Marc D, Philip V, Lehman David H, Livesay Leslie L (2000) Results from the deep space 1 technology validation mission. Acta Astronaut 47(2–9):475–487

    Article  Google Scholar 

  29. Racca GD, Marini A, Stagnaro L, van Dooren J, di Napoli L, Foing BH, Lumb R, Volp J, Brinkmann J, Grünagel R, Estublier D, Tremolizzo E, McKay M, Camino O, Schoemaekers J, Hechler M, Khan M, Rathsman P, Andersson G, Anflo K, Berge S, Bodin P, Edfors A, Hussain A, Kugelberg J, Larsson N, Ljung B, Meijer L, Mörtsell A, Nordebäck T, Persson S, Sjöberg F (2002) SMART-1 mission description and development status. Planet Space Sci 50(14–15):1323–1337

    Article  Google Scholar 

  30. Junichiro K, Fujiwara A, Uesugi T (2008) Hayabusa—its technology and science accomplishment summary and hayabusa-2. Acta Astronaut 62(10–11):639–647

  31. Nazari Morad, Butcher Eric A, William A (2016) Earth–Moon L1 libration point orbit continuous stationkeeping control using time-varying LQR and backstepping. Int J Dyn Control

  32. Wang-Sang K, Lo Martin W, Marsden Jerrold E, Ross Shane D (2006) Dynamical systems, the three-body problem and space mission design. Marsden Books, Free online Copy

  33. June BG (1996) Poincaré and the three body problem. Am Math Soc

  34. Richardson David L (1980) Analytic construction of periodic orbits about the collinear points. Celest Mech 22(3):241–253

    Article  MathSciNet  Google Scholar 

  35. Breakwell John V, Brown John V (1979) The Halo family of 3-dimensional periodic orbits in the Earth-Moon restricted 3-body problem. Celest Mech 20(4):389–404

    Article  Google Scholar 

  36. Richardson David L (1980) A note on a Lagrangian formulation for motion about the collinear points. Celest Mech 22(3):231–236

    Article  MathSciNet  Google Scholar 

  37. Kirk Donald E (2004) Optimal control theory: an introduction. Courier Corporation

  38. Cimen T (2008) State-dependent Riccati equation (SDRE) control: a survey. In: IFAC proceedings volumes, vol 41. IFAC

  39. Murray Wonham W (1979) Linear multivariable control: a geometric approach. Springer-Verlag

  40. Erdem EB (2001) Analysis and real-time implementation of state-dependent Riccati equation controlled systems. PhD thesis, University of Illinois at Urbana-Champaign

  41. Ribeiro Mauricio A, Balthazar Jose M, Lenz Wagner B, Rocha Rodrigo T, Tusset Angelo M (2020) Numerical exploratory analysis of dynamics and control of an atomic force microscopy in tapping mode with fractional order. Shock Vib 1–18:2020

    Google Scholar 

  42. Hammett Kelly D (1997) Control of nonlinear systems via state-feedback Riccati equation techniques. PhD thesis, Air Force Institute of Technology

  43. Cloutier JR (1997) State-dependent Riccati equation techniques: an overview. In: Proceedings of the 1997 American control conference (Cat. No.97CH36041), number June, vol 2. IEEE, pp 932–936

  44. Kramer Herbert J (2002) Survey of missions and sensors, observation of the Earth and its environment

  45. Broucke R (1969) Stability of periodic orbits in the elliptic, restricted three-body problem. AIAA J 7(6):1003–1009

    Article  Google Scholar 

  46. Howell Kathleen C, Breakwell John V (1984) Almost rectilinear halo orbits. Celest Mech 32(1):29–52

    Article  MathSciNet  Google Scholar 

  47. Semenovich PL, Boltyanski VG, I, Gamkrelidze RV, Mishchenko EF (1961) The mathematical theory of optimal processes. Nauka, Moscow

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thiago César Lousada Marsola.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Technical editor: Monica Carvalho.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Marsola, T.C.L., da Silva Fernandes, S. & Balthazar, J.M. Stationkeeping controllers for Earth–Moon L1 and L2 libration points halo orbits. J Braz. Soc. Mech. Sci. Eng. 43, 347 (2021). https://doi.org/10.1007/s40430-021-03071-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40430-021-03071-9

Keywords

Navigation