Skip to main content
Log in

Fokker–Plank System for Movement of Micro-organism Population in Confined Environment

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

We consider self-propelled particles confined between two parallel plates, moving with a constant velocity while their moving direction changes by rotational diffusion. The probability distribution of such micro-organisms in confined environment is singular because particles accumulate at the boundaries. This leads us to distinguish between the probability distribution densities in the bulk and in the boundaries. They satisfy a degenerate Fokker–Planck system and we propose boundary conditions that take into account the switching between free-moving and boundary-contacting particles. Relative entropy property, a priori estimates and the convergence to an unique steady state are established. The steady states of both the PDE and individual based stochastic models are compared numerically.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Berke, A.P., Turner, L., Berg, H.C., Lauga, E.: Hydrodynamic attraction of swimming microorganisms by surfaces. Phys. Rev. Lett. 101, 038102 (2008)

    Article  ADS  Google Scholar 

  2. Berlyand, L., Jabin, P.-E., Potomkin, M., Ratajczyk, E.: A kinetic approach to active rods dynamics in confined domains. Multiscale Model. Simul. 18, 1–20 (2020)

    Article  MathSciNet  Google Scholar 

  3. Bessemoulin-Chatard, M., Herda, M., Rey, T.: Hypocoercivity and diffusion limit of a finite volume scheme for linear kinetic equations. Math. Comput. 89, 1093–1133 (2020)

    Article  MathSciNet  Google Scholar 

  4. Bianchi, S., Saglimbeni, F., Di Leonardo, R.: Holographic imaging reveals the mechanism of wall entrapment in swimming bacteria. Phys. Rev. X 7, 011010 (2017)

    Google Scholar 

  5. Davis, M.H.A.: Piecewise-deterministic Markov processes: a general class of nondiffusion stochastic models. J. Roy. Stat. Soc. Ser. B 46, 353–388 (1984). With discussion

    MathSciNet  MATH  Google Scholar 

  6. Di Leonardo, R., Angelani, L., Dell’Arciprete, D., Ruocco, G., Iebba, V., Schippa, S., Conte, M.P., Mecarini, F., De Angelis, F., Di Fabrizio, E.: Bacterial ratchet motors. Proc. Natl. Acad. Sci. USA 107, 9541–9545 (2010)

    Article  ADS  Google Scholar 

  7. DiLuzio, W.R., Turner, L., Mayer, M., Garstecki, P., Weibel, D.B., Berg, H.C., Whitesides, G.M.: Escherichia coli swim on the right-hand side. Nature 435, 1271–1274 (2005)

    Article  ADS  Google Scholar 

  8. Dolbeault, J., Mouhot, C., Schmeiser, C.: Hypocoercivity for linear kinetic equations conserving mass. Trans. Am. Math. Soc. 367, 3807–3828 (2015)

    Article  MathSciNet  Google Scholar 

  9. Drescher, K., Dunkel, J., Cisneros, L.H., Ganguly, S., Goldstein, R.E.: Fluid dynamics and noise in bacterial cell-cell and cell-surface scattering. Proc. Natl. Acad. Sci. USA 108, 10940–10945 (2011)

    Article  ADS  Google Scholar 

  10. Dujardin, G., Hérau, F., Lafitte, P.: Coercivity, hypocoercivity, exponential time decay and simulations for discrete Fokker–Planck equations. Numer. Math. 144, 615–697 (2020)

    Article  MathSciNet  Google Scholar 

  11. Elgeti, J., Gompper, G.: Self-propelled rods near surfaces. Europhys. Lett. 85, 38002 (2009)

    Article  ADS  Google Scholar 

  12. Ezhilan, B., Saintillan, D.: Transport of a dilute active suspension in pressure-driven channel flow. J. Fluid Mech. 777, 482–522 (2015)

    Article  MathSciNet  ADS  Google Scholar 

  13. Figueroa-Morales, N., Leonardo Miño, G., Rivera, A., Caballero, R., Clément, E., Altshuler, E., Lindner, A.: Living on the edge: transfer and traffic of E. coli in a confined flow. Soft Matter 11, 6284–6293 (2015)

    Article  ADS  Google Scholar 

  14. Frymier, P.D., Ford, R.M., Berg, H.C., Cummings, P.T.: Three-dimensional tracking of motile bacteria near a solid planar surface. Proc. Natl. Acad. Sci. USA 92, 6195–6199 (1995)

    Article  ADS  Google Scholar 

  15. Galajda, P., Keymer, J., Chaikin, P., Austin, R.: A wall of funnels concentrates swimming bacteria. J. Bacteriol. 189, 8704–8707 (2007)

    Article  Google Scholar 

  16. Hérau, F.: Introduction to hypocoercive methods and applications for simple linear inhomogeneous kinetic models. In: Lectures on the Analysis of Nonlinear Partial Differential Equations. Part 5, vol. 5 of Morningside Lectures in Mathematics, International Press, Somerville, MA, 2018, pp. 119–147

  17. Kloeden, P.E., Platen, E.: Numerical Solution of Stochastic Differential Equations. Springer, Berlin (1992)

    Book  Google Scholar 

  18. Lee, C.F.: Active particles under confinement: aggregation at the wall and gradient formation inside a channel. New J. Phys. 15, 055007 (2013)

    Article  MathSciNet  ADS  Google Scholar 

  19. Li, G., Tang, J.X.: Accumulation of microswimmers near a surface mediated by collision and rotational Brownian motion. Phys. Rev. Lett. 103, 078101 (2009)

    Article  ADS  Google Scholar 

  20. Li, G., Bensson, J., Nisimova, L., Munger, D., Mahautmr, P., Tang, J.X., Maxey, M.R., Brun, Y.V.: Accumulation of swimming bacteibria near a solid surface. Phys. Rev. E 84, 041932 (2011)

    Article  ADS  Google Scholar 

  21. Michel, P., Mischler, S., Perthame, B.: General relative entropy inequality: an illustration on growth models. J. Math. Pures Appl. 84, 1235–1260 (2005)

    Article  MathSciNet  Google Scholar 

  22. Molaei, M., Barry, M., Stocker, R., Sheng, J.: Failed escape: solid surfaces prevent tumbling of Escherichia coli. Phys. Rev. Lett. 113, 068103 (2014)

    Article  ADS  Google Scholar 

  23. Sokolov, A., Apodaca, M.M., Grzybowski, B.A., Aranson, I.S.: Swimming bacteria power microscopic gears. Proc. Natl. Acad. Sci. USA 107, 969–974 (2010)

    Article  ADS  Google Scholar 

  24. Spagnolie, S.E., Lauga, E.: Hydrodynamics of self-propulsion near a boundary: predictions and accuracy of far-field approximations. J. Fluid Mech. 700, 105–147 (2012)

    Article  MathSciNet  ADS  Google Scholar 

  25. Villani, C.: Hypocoercivity, Memoirs of American Mathematical Society, 202 (2009), pp. iv+141

  26. Wagner, C.G., Hagan, M.F., Baskaran, A.: Steady-state distributions of ideal active Brownian particles under confinement and forcing. J. Stat. Mech. 2017, 068103 (2017)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Benoit Perthame.

Additional information

Communicated by Julien Tailleur.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

B.P. has received funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (Grant Agreement No 740623). M. Tang is supported by NSFC 11871340 and Young Changjiang Scholar of Ministry of Education in China.

Appendix: Discrete Relative Entropy Inequality and a Priori Estimate

Appendix: Discrete Relative Entropy Inequality and a Priori Estimate

The semi-discrete relative gap \(\omega _{i,j}(t)\) and \(\omega _{\pm ,j}(t)\) are defined by

$$\begin{aligned} \left\{ \begin{aligned} \omega _{i,j}(t)=&\frac{p_{i,j}(t)}{q_{i,j}}-1,&\begin{aligned} i\in V_y \setminus \{1\},\quad j&\in V_{\theta _+}, \\ \text {or} \quad i\in V_y \setminus \{2I\},\quad j&\in V_{\theta _-}, \\ \end{aligned}&\\ \omega _{1,j}(t)=&0, \quad \omega _{+,j}(t)=\frac{p_{+,j}(t)}{q_{+,j}}-1,&j\in V_{\theta _+}, \\ \omega _{2I,j}(t)=&0, \quad \omega _{-,j}(t)=\frac{p_{-,j}(t)}{q_{-,j}}-1,&j\in V_{\theta _-}, \end{aligned}\right. \end{aligned}$$
(6.1)

Here we state the discrete relative entropy inequality which is satisfied by discrete density \(p_{i,j}(t)\) and \(p_{\pm ,j}(t)\).

Theorem 6.1

For any convex function \(H\in \mathcal {C}^2(\mathbb {R})\), semi-discrete relative gap \(\omega _{i,j}(t)\) and \(\omega _{\pm ,j}(t)\) satisfy the relative entropy inequality:

$$\begin{aligned} \frac{\mathrm{d}}{ \, \mathrm{d} t}\left[ \sum _{i\in V_y}\sum _{j\in V_{\theta }}q_{i,j}H(\omega _{i,j})+\sum _{j\in V_{\theta _+}}q_{+,j}H(\omega _{+,j})+\sum _{j\in V_{\theta _-}}q_{-,j}H(\omega _{-,j})\right] \le 0, \end{aligned}$$
(6.2)

where equality holds if and only if \(\omega _{i,j}=0\) for any \(i \in V_{y}\), \(j \in V_{\theta }\) and \(\omega _{\pm ,j}=0\) for any \(j \in V_{\theta ,\pm }\).

Proof

As in Sect. 2, we divide the proof in several steps.

First step: estimate of relative entropy at BCP. Substitute \(p_{+,j}\) by \(q_{+,j}\omega _{+,j}+q_{+,j}\) in (4.2d) and employ (4.6d), we deduce that

$$\begin{aligned} q_{+,j}\frac{\mathrm{d}\omega _{+,j}}{ \, \mathrm{d} t}= & {} \frac{D_{\theta }}{\Delta \theta ^2}[(q_{+,j-1}\omega _{+,j-1}+q_{+,j+1}\omega _{+,j+1}-2q_{+,j}\omega _{+,j}) \nonumber \\&+(q_{+,j-1}+q_{+,j+1}-2q_{+,j})] \nonumber \\&+\,V\sin \theta _j q_{2I,j}(\omega _{2I,j}+1) \nonumber \\= & {} \frac{D_{\theta }}{\Delta \theta ^2}[(q_{+,j-1}\omega _{+,j-1}+q_{+,j+1}\omega _{+,j+1}-2q_{+,j}\omega _{+,j})\nonumber \\&-\omega _{2I,j}(q_{+,j-1}+q_{+,j+1}-2q_{+,j})] \nonumber \\= & {} \frac{D_{\theta }}{\Delta \theta ^2}[q_{+,j+1}(\omega _{+,j+1}-\omega _{+,j})-q_{+,j-1}(\omega _{+,j}-\omega _{+,j-1})\nonumber \\&+\,(\omega _{+,j}-\omega _{2I,j})(q_{+,j-1}+q_{+,j+1}-2q_{+,j})]. \end{aligned}$$
(6.3)

Notice that

$$\begin{aligned} \begin{aligned}&q_{+,j-1}H(\omega _{+,j-1})+q_{+,j+1}H(\omega _{+,j+1})-2q_{+,j}H(\omega _{+,j})\\&\quad =q_{+,j+1}[H(\omega _{+,j+1})-H(\omega _{+,j})]-q_{+,j-1}[H(\omega _{+,j})-H(\omega _{+,j-1})]\\&\qquad +H(\omega _{+,j}) (q_{+,j-1}+q_{+,j+1}-2q_{+,j}), \end{aligned} \end{aligned}$$
(6.4)

by rearranging \(H'(\omega _{+,j})\)(6.3)\(-\frac{D_{\theta }}{\Delta \theta ^2}\)(6.4), it follows that

$$\begin{aligned} \begin{aligned}&q_{+,j}\frac{\mathrm{d}H(\omega _{+,j})}{ \, \mathrm{d} t}-\frac{D_{\theta }}{\Delta \theta ^2}[q_{+,j-1}H(\omega _{+,j-1})+q_{+,j+1}H(\omega _{+,j+1})-2q_{+,j}H(\omega _{+,j})] \\&\quad =-\frac{D_{\theta } }{\Delta \theta ^2}q_{+,j+1}[H(\omega _{+,j+1})-H(\omega _{+,j})-H'(\omega _{+,j})(\omega _{+,j+1}-\omega _{+,j})] \\&\qquad -\frac{D_{\theta } }{\Delta \theta ^2}q_{+,j-1}[H'(\omega _{+,j})(\omega _{+,j}-\omega _{+,j-1})-H(\omega _{+,j})+H(\omega _{+,j-1})] \\&\qquad -[H'(\omega _{+,j})(\omega _{+,j}-\omega _{2I,j})-H(\omega _{+,j})+H(\omega _{2I,j})]V\sin \theta _j q_{2I,j}\\&\qquad +H(\omega _{2I,j})V\sin \theta _j q_{2I,j},\\&\quad \le H(\omega _{2I,j})V\sin \theta _j q_{2I,j} \end{aligned}\end{aligned}$$
(6.5)

where equality holds if and only if \(\omega _{+,j-1}=\omega _{+,j}=\omega _{+,j+1}=\omega _{2I,j}\).

Sum up (6.5) for \(j\in V_{\theta _+}\), we have

$$\begin{aligned}&\frac{\mathrm{d}}{\mathrm{d}t}\sum _{j\in V_{\theta _+}}q_{+,j}H(\omega _{+,j})+\frac{D_{\theta }}{\Delta \theta ^2}q_{+,J+1}H(\omega _{+,J+1})+\frac{D_{\theta }}{\Delta \theta ^2}q_{+,2J-1}H(\omega _{+,2J})\nonumber \\&\quad \le \sum _{j\in V_{\theta _+}}H(\omega _{2I,j})V\sin \theta _j q_{2I,j},\end{aligned}$$
(6.6)

where equality holds if and only if \(\omega _{+,j}=\omega _{2I,j}=0\) for any \(j\in V_{\theta _+}\).

Similarly, we obtain an inequality for \(q_{-,j}H(\omega _{-,j})\)

$$\begin{aligned}&\frac{\mathrm{d}}{\mathrm{d}t}\sum _{j\in V_{\theta _-}}q_{-,j}H(\omega _{-,j})+\frac{D_{\theta }}{\Delta \theta ^2}q_{-,1}H(\omega _{-,1})+\frac{D_{\theta }}{\Delta \theta ^2}q_{-,J}H(\omega _{-,J-1}) \nonumber \\&\qquad \le -\sum _{j\in V_{\theta _-}}H(\omega _{1,j})V\sin \theta _j q_{1,j},\end{aligned}$$
(6.7)

where equality holds if and only if \(\omega _{-,j}=\omega _{1,j}=0\) for any \(j\in V_{\theta _-}\).

Second Step: Estimate of Relative Entropy at FSP Substituting \(p_{i,j}\) by \(q_{i,j}\omega _{i,j}+q_{i,j}\) in (4.2a) we obtain that for any \(i\in V_y\), \(j\in V_{\theta _+}\),

$$\begin{aligned} \begin{aligned} q_{i,j}\frac{\mathrm{d}\omega _{i,j}}{ \, \mathrm{d} t}&=-\frac{V\sin \theta _j}{\Delta y} (q_{i,j}\omega _{i,j}-q_{i-1,j}\omega _{i-1,j})\\&\quad +\frac{D_{\theta }}{\Delta \theta ^2}(q_{i,j-1}\omega _{i,j-1}+q_{i,j+1}\omega _{i,j+1}-2q_{i,j}\omega _{i,j}) \\&=-\frac{V\sin \theta _j}{\Delta y} q_{i-1,j}(\omega _{i,j}-\omega _{i-1,j})+\frac{D_{\theta }}{\Delta \theta ^2}q_{i,j+1}(\omega _{i,j+1}-\omega _{i,j})\\&\quad -\frac{D_{\theta }}{\Delta \theta ^2}q_{i,j-1}(\omega _{i,j}-\omega _{i,j-1})\\&\quad +\omega _{i,j}\left[ -\frac{V\sin \theta _j}{\Delta y}(q_{i,j}-q_{i-1,j})+\frac{D_{\theta }}{\Delta \theta ^2}(q_{i,j-1}+q_{i,j+1}-2q_{i,j})\right] \end{aligned} \end{aligned}$$
(6.8)

By (4.6a), the last term is zero. Rearranging \(H'(\omega _{i,j})\)(6.8), we deduce

$$\begin{aligned}\begin{aligned}&q_{i,j}\frac{\mathrm{d}H(\omega _{i,j})}{ \, \mathrm{d} t}-\frac{D_{\theta }}{\Delta \theta ^2}[q_{i,j-1}H(\omega _{i,j-1})+q_{i,j+1}H(\omega _{i,j+1})-2q_{i,j}H(\omega _{i,j})] \\&\quad =-\frac{V\sin \theta _j}{\Delta y} q_{i-1,j}H'(\omega _{i,j})(\omega _{i,j}-\omega _{i-1,j}) +\frac{2D_{\theta }}{\Delta \theta ^2}q_{i,j}H(\omega _{i,j}) \\&\qquad +\frac{D_{\theta }}{\Delta \theta ^2}q_{i,j+1}[H'(\omega _{i,j})(\omega _{i,j+1}-\omega _{i,j})-H(\omega _{i,j+1})]\\&\qquad -\frac{D_{\theta }}{\Delta \theta ^2}q_{i,j-1}[H'(\omega _{i,j})(\omega _{i,j}-\omega _{i,j-1})+H(\omega _{i,j-1})] \\&\quad =-\frac{V\sin \theta _j}{\Delta y}[q_{i,j}H(\omega _{i,j})-q_{i-1,j}H(\omega _{i-1,j})]\\&\qquad -\frac{V\sin \theta _j}{\Delta y}q_{i-1,j}[H'(\omega _{i,j})(\omega _{i,j}-\omega _{i-1,j})\\&\qquad -\,H(\omega _{i,j})+H(\omega _{i-1,j})] \\&\qquad -\frac{D_{\theta }}{\Delta \theta ^2}q_{i,j+1}[H(\omega _{i,j+1})-H(\omega _{i,j})-H'(\omega _{i,j})(\omega _{i,j+1}-\omega _{i,j})] \\&\qquad -\frac{D_{\theta }}{\Delta \theta ^2}q_{i,j-1}[H'(\omega _{i,j})(\omega _{i,j}-\omega _{i,j-1})-H(\omega _{i,j})+H(\omega _{i,j-1})] \\&\qquad -\frac{V\sin \theta _j}{\Delta y}(q_{i-1,j}-q_{i,j})H(\omega _{i,j})-\frac{D_{\theta }}{\Delta \theta ^2}(q_{i,j-1}+q_{i,j+1}-2q_{i,j})H(\omega _{i,j}). \end{aligned} \end{aligned}$$

The last two terms offset according to (4.6a), so we deduce that

$$\begin{aligned} \begin{aligned}&q_{i,j}\frac{\mathrm{d}H(\omega _{i,j})}{ \, \mathrm{d} t}+\frac{V\sin \theta _j}{\Delta y}[q_{i,j}H(\omega _{i,j})-q_{i-1,j}H(\omega _{i-1,j})]\\&\quad \le \frac{D_{\theta }}{\Delta \theta ^2}[q_{i,j-1}H(\omega _{i,j-1})+q_{i,j+1}H(\omega _{i,j+1})-2q_{i,j}H(\omega _{i,j})], \end{aligned} \end{aligned}$$
(6.9)

holds for \(i \in V_y\), \(j \in V_{\theta _+}\), where equality holds if and only if \(\omega _{i,j}=\omega _{i,j-1}=\omega _{i,j+1}=\omega _{i-1,j}\).

Similarly, by rearranging (4.2a) and employ (4.6b), we have

$$\begin{aligned} \begin{aligned}&q_{i,j}\frac{\mathrm{d}H(\omega _{i,j})}{ \, \mathrm{d} t}+\frac{V\sin \theta _j}{\Delta y}[q_{i+1,j}H(\omega _{i+1,j})-q_{i,j}H(\omega _{i,j})]\\&\quad \le \frac{D_{\theta }}{\Delta \theta ^2}[q_{i,j-1}H(\omega _{i,j-1})+q_{i,j+1}H(\omega _{i,j+1})-2q_{i,j}H(\omega _{i,j})], \end{aligned}\end{aligned}$$
(6.10)

holds for \(i \in V_y \), \(j \in V_{\theta _-}\), where equality holds if and only if \(\omega _{i,j}=\omega _{i,j-1}=\omega _{i,j+1}=\omega _{i+1,j}\).

For \(i \in V_y\setminus \{1,2I\}\), \(j\in V_{\theta _0}\), (4.2c) and (4.6a) gives

$$\begin{aligned} q_{i,j}\frac{\mathrm{d}H(\omega _{i,j})}{ \, \mathrm{d} t} \le \frac{D_{\theta }}{\Delta \theta ^2}[q_{i,j-1}H(\omega _{i,j-1})+q_{i,j+1}H(\omega _{i,j+1})-2q_{i,j}H(\omega _{i,j})], \end{aligned}$$
(6.11)

where equality holds if and only if \(\omega _{i,j}=\omega _{i,j-1}=\omega _{i,j+1}\).

Third step: special case where \(\frac{\partial p}{\partial \theta }\) jumps. On node \((i,j)=(2I,J)\), substitute \(p_{i,j}\) by \(q_{i,j}\omega _{i,j}+q_{i,j}\) in (4.4c) we obtain

$$\begin{aligned} \begin{aligned} q_{2I,J}\frac{\mathrm{d}\omega _{2I,J}}{\mathrm{d}t}&=\frac{D_{\theta }}{\Delta \theta ^2}\left( q_{2I,J-1}\omega _{2I,J-1}+q_{2I,J+1}\omega _{2I,J+1}-2q_{2I,J}\omega _{2I,J}+\frac{1}{\Delta y}q_{+,J+1}\omega _{+,J+1}\right) \\&=\frac{D_{\theta }}{\Delta \theta ^2}\left[ q_{2I,J-1}(\omega _{2I,J-1}-\omega _{2I,J})+q_{2I,J+1}(\omega _{2I,J+1}-\omega _{2I,J})\right. \\&\left. \quad +\frac{1}{\Delta y}q_{+,J+1}(\omega _{+,J+1}-\omega _{2I,J})\right] \\&\quad +\,\frac{D_{\theta }}{\Delta \theta ^2}\omega _{2I,J}\left( q_{2I,J-1}+q_{2I,J+1}-2q_{2I,J}+\frac{1}{\Delta y}q_{+,J+1}\right) , \end{aligned}\end{aligned}$$
(6.12)

in which the last term is zero by (4.7). Multiply both sides with \(H'(\omega _{2I,J})\), it follows that

$$\begin{aligned}&q_{2I,J}\frac{\mathrm{d}H(\omega _{2I,J})}{\mathrm{d}t}-\frac{D_{\theta }}{\Delta \theta ^2}\left[ q_{2I,J+1}H(\omega _{2I,J+1})+q_{2I,J-1}H(\omega _{2I,J-1})-2q_{2I,J}H(\omega _{2I,J})\right] \\&\quad =\frac{D_{\theta }}{\Delta \theta ^2}q_{2I,J-1}[H'(\omega _{2I,J})(\omega _{2I,J-1}-\omega _{2I,J})-H(\omega _{2I,J-1})]\\&\qquad +\frac{D_{\theta }}{\Delta \theta ^2}q_{2I,J+1}[H'(\omega _{2I,J})(\omega _{2I,J+1}-\omega _{2I,J})-H(\omega _{2I,J+1})] \\&\qquad +\frac{D_{\theta }}{\Delta \theta ^2 \Delta y}q_{+,J+1}H'(\omega _{2I,J})(\omega _{+,J+1}-\omega _{2I,J+1})+\frac{2D_{\theta }}{\Delta \theta ^2}q_{2I,J}H(\omega _{2I,J}) \\&\quad =\frac{D_{\theta }}{\Delta \theta ^2}q_{2I,J-1}[H'(\omega _{2I,J})(\omega _{2I,J-1}-\omega _{2I,J})-H(\omega _{2I,J-1})+H(\omega _{2I,J})] \\&\qquad +\frac{D_{\theta }}{\Delta \theta ^2}q_{2I,J+1}[H'(\omega _{2I,J})(\omega _{2I,J+1}-\omega _{2I,J})-H(\omega _{2I,J+1})+H(\omega _{2I,J})] \\&\qquad +\frac{D_{\theta }}{\Delta \theta ^2 \Delta y}q_{+,J+1}[H'(\omega _{2I,J})(\omega _{+,J+1}-\omega _{2I,J})-H(\omega _{+,J+1})+H(\omega _{2I,J})] \\&\qquad +\frac{D_{\theta }}{\Delta \theta ^2 \Delta y}q_{+,J+1}H(\omega _{+,J+1}) \\&\qquad -\frac{D_{\theta }}{\Delta \theta ^2}\left( q_{2I,J-1}+q_{2I,J+1}-2q_{2I,J}+\frac{1}{\Delta y}q_{+,J+1}\right) H(\omega _{2I,J}). \\ \end{aligned}$$

The last term is zero according to (4.7), so we deduce that

$$\begin{aligned} q_{2I,J}\frac{\mathrm{d}H(\omega _{2I,J})}{\mathrm{d}t}&\le \frac{D_{\theta }}{\Delta \theta ^2}\left[ q_{2I,J+1}H(\omega _{2I,J+1})+q_{2I,J-1}H(\omega _{2I,J-1})-2q_{2I,J}H(\omega _{2I,J})\right] \nonumber \\&\quad +\frac{D_{\theta }}{\Delta \theta ^2 \Delta y}q_{+,J+1}H(\omega _{+,J+1})\end{aligned}$$
(6.13)

where equality holds if and only if \(\omega _{2I,J-1}=\omega _{2I,J}=\omega _{2I,J+1}=\omega _{+,J+1}\).

Similarly, on node \((i,j)=(2I,2J),(1,0),(1,J)\), we have

$$\begin{aligned} q_{2I,2J}\frac{\mathrm{d}H(\omega _{2I,2J})}{\mathrm{d}t}\le & {} \frac{D_{\theta }}{\Delta \theta ^2}\left[ q_{2I,2J+1}H(\omega _{2I,2J+1})+q_{2I,2J-1}H(\omega _{2I,2J-1})\right. \nonumber \\&\left. -2q_{2I,2J}H(\omega _{2I,2J})\right] +\frac{D_{\theta }}{\Delta \theta ^2 \Delta y}q_{+,2J-1}H(\omega _{+,2J-1})\end{aligned}$$
(6.14)
$$\begin{aligned} q_{1,0}\frac{\mathrm{d}H(\omega _{1,0})}{\mathrm{d}t}\le & {} \frac{D_{\theta }}{\Delta \theta ^2}\left[ q_{1,1}H(\omega _{1,1})+q_{1,-1}H(\omega _{1,-1})-2q_{1,0}H(\omega _{1,0})\right] \nonumber \\&+\frac{D_{\theta }}{\Delta \theta ^2 \Delta y}q_{-,1}H(\omega _{-,1})\end{aligned}$$
(6.15)
$$\begin{aligned} q_{1,J}\frac{\mathrm{d}H(\omega _{1,J})}{\mathrm{d}t}\le & {} \frac{D_{\theta }}{\Delta \theta ^2}\left[ q_{1,J+1}H(\omega _{1,J+1})+q_{1,J-1}H(\omega _{1,J-1})-2q_{1,J}H(\omega _{1,J})\right] \nonumber \\&+\frac{D_{\theta }}{\Delta \theta ^2 \Delta y}q_{-,J-1}H(\omega _{-,J-1}) \end{aligned}$$
(6.16)

Fourth step: collection and offsets To summarize, sum up (6.9) for \(i \in V_y\), \(j \in V_{\theta _+}\), (6.10) for \(i \in V_y\), \(j \in V_{\theta _-}\), (6.11) for \(i \in V_y\setminus \{1,2I\}\), \(j \in V_{\theta _0}\), together with (6.13)–(6.16), the diffusion term offsets and it follows that

$$\begin{aligned} \begin{aligned}&\frac{\mathrm{d}}{ \, \mathrm{d} t}\sum _{i\in V_y}\sum _{j\in V_{\theta }}q_{i,j}H(\omega _{i,j})+\sum _{j\in V_{\theta _-}}\frac{V\sin \theta _j}{\Delta y}q_{2I,j}H(\omega _{2I,j})-\sum _{j\in V_{\theta _-}}\frac{V\sin \theta _j}{\Delta y}q_{2I,j}H(\omega _{2I,j})\\&\quad \le \frac{D_{\theta }}{\Delta \theta ^2 \Delta y}[q_{+,J+1}H(\omega _{+,J+1})+q_{+,2J-1}H(\omega _{+,2J-1})\\&\qquad +q_{-,1}H(\omega _{-,1})+q_{-,J-1}H(\omega _{+,J-1})]. \end{aligned}\end{aligned}$$
(6.17)

Hence (6.5), (6.7) and (6.17) imply inequality (6.2) in the theorem.

Define

$$\begin{aligned} M(t)=\Delta \theta \Delta y\sum _{i\in V_y}\sum _{j\in V_\theta }q_{i,j}\omega _{i,j}^2(t)+\Delta \theta \sum _{j\in V_{\theta _+}}q_{+,j}\omega _{+,j}^2(t)+\Delta \theta \sum _{j\in V_{\theta _-}}q_{-,j}\omega _{-,j}^2(t).\end{aligned}$$
(6.18)

Choose \(H(x)=x^2\) in (6.2) then we have \(\mathrm{d}M(t) / \, \mathrm{d} t\le 0\). Suppose the initial data of \(\omega _{i,j}\) and \(\omega _{\pm ,j}\) satisfies \(M(0)<\infty \), then since M(t) decreases monotonically, and it has a lower bound 0, so M(t) converges as t goes to infinity. While the equality of (6.2) holds if and only if \(M(t)=0\), so we have \(\lim _{t\rightarrow \infty }M(t)=0\), which implies \(\lim _{t\rightarrow \infty }\omega _{i,j}(t)=\lim _{t\rightarrow \infty }\omega _{\pm ,j}(t)=0.\) We conclude that \(p_{i,j}(t)\) converges to \(q_{i,j}\) for any \(i \in V_\theta \), \(j \in V_y\) as t goes to infinity, and \(p_{\pm ,j}(t)\) converges to \(q_{\pm ,j}\) for any \(j \in V_{j,\pm }\) as t goes to infinity.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fu, J., Perthame, B. & Tang, M. Fokker–Plank System for Movement of Micro-organism Population in Confined Environment. J Stat Phys 184, 1 (2021). https://doi.org/10.1007/s10955-021-02760-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10955-021-02760-y

Keywords

Mathematics Subject Classification

Navigation