Skip to main content
Log in

Neonatal Proinflammatory Stress and Expression of Neuroinflammation-Associated Genes in the Rat Hippocampus

  • Published:
Biochemistry (Moscow) Aims and scope Submit manuscript

Abstract

Differential effect of the neonatal proinflammatory stress (NPS) on the development of neuroinflammation in the hippocampus and induction of the depressive-like behavior in juvenile and adult male and female rats was studied. NPS induction by bacterial lipopolysaccharide in the neonatal period upregulated expression of the Il6 and Tnf mRNAs accompanied by the development of depressive-like behavior in the adult male rats. NPS increased expression of the mRNAs for fractalkine and its receptor in the ventral hippocampus of the juvenile male rats, but did not affect expression of mRNAs for the proinflammatory cytokines and soluble form of fractalkine. NPS downregulated expression of fractalkine mRNA in the dorsal hippocampus of juvenile males. No significant effects of NPS were found in the female rats. Therefore, the NPS induces long-term changes in the expression of neuroinflammation-associated genes in different regions of the hippocampus, which ultimately leads to the induction of neuroinflammation and development of depressive-like behavior in male rats.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

Abbreviations

DH:

dorsal hippocampus

IFN:

interferon

IL:

interleukin

LPS:

bacterial lipopolysaccharide

NPS:

neonatal proinflammatory stress

FST:

forced swimming test

P:

postnatal day

PBS:

phosphate buffered saline

SPT:

sucrose preference test

TNF:

tumor necrosis factor

VH:

ventral hippocampus

References

  1. Kupfer, D. J., Frank, E., and Phillips, M. L. (2012) Major depressive disorder: new clinical, neurobiological, and treatment perspectives, Lancet, 379, 1045-1055, https://doi.org/10.1016/S0140-6736(11)60602-8.

    Article  PubMed  Google Scholar 

  2. Stepanichev, M., Dygalo, N. N., Grigoryan, G., Shishkina, G. T., and Gulyaeva, N. (2014) Rodent models of depression: Neurotrophic and neuroinflammatory biomarkers, Biomed Res. Int., 2014, 932757, https://doi.org/10.1155/2014/932757.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Bilbo, S., and Schwarz, J. (2009) Early-life programming of later-life brain and behavior: a critical role for the immune system, Front. Behav. Neurosci., 3, 14, https://doi.org/10.3389/neuro.08.014.2009.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Tishkina, A., Stepanichev, M., Kudryashova, I., Freiman, S., Onufriev, M., et al. (2016) Neonatal proinflammatory challenge in male Wistar rats: effects on behavior, synaptic plasticity, and adrenocortical stres sresponse, Behav. Brain Res., 304, 1-10, https://doi.org/10.1016/j.bbr.2016.02.001.

    Article  PubMed  Google Scholar 

  5. Spencer, S. J., and Meyer, U. (2017) Perinatal programming by inflammation, Brain Behav. Immun., 63, 1-7, https://doi.org/10.1016/j.bbi.2017.02.007.

    Article  PubMed  Google Scholar 

  6. Cheng, Y., Pardo, M., Armini, R., Martinez, A., Mouhsine, H., et al. (2016) Stress-induced neuroinflammation is mediated by GSK3-dependent TLR4 signaling that promotes susceptibility to depression-like behavior, Brain. Behav. Immun., 53, 207-222, https://doi.org/10.1016/j.bbi.2015.12.012.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Claypoole, L. D., Zimmerberg, B., and Williamson, L. L. (2017) Neonatal lipopolysaccharide treatment alters hippocampal neuroinflammation, microglia morphology and anxiety-like behavior in rats selectively bred for an infantile trait, Brain Behav. Immun., 59, 135-146, https://doi.org/10.1016/j.bbi.2016.08.017.

    Article  CAS  PubMed  Google Scholar 

  8. Barth, C. R., Luft, C., Funchal, G. A., Oliveira, J. R., de Porto, B. N., and Donadio, M. V. F. (2016) LPS-induced neonatal stress in mice affects the response profile to an inflammatory stimulus in an age and sex-dependent manner, Dev. Psychobiol., 58, 600-613, https://doi.org/10.1002/dev.21404.

    Article  CAS  PubMed  Google Scholar 

  9. Walker, F. R., Hodyl, N. A., and Hodgson, D. M. (2009) Neonatal bacterial endotoxin challenge interacts with stress in the adult male rat to modify KLH specific antibody production but not KLH stimulated ex vivo cytokine release, J. Neuroimmunol., 207, 57-65, https://doi.org/10.1016/j.jneuroim.2008.11.012.

    Article  CAS  PubMed  Google Scholar 

  10. Estes, M. L., and McAllister, A. K. (2014) Alterations in immune cells and mediators in the brain: it’s not always neuroinflammation! Brain Pathol., 24, 623-630, https://doi.org/10.1111/bpa.12198.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Kubera, M., Obuchowicz, E., Goehler, L., Brzeszcz, J., and Maes, M. (2011) In animal models, psychosocial stress-induced (neuro)inflammation, apoptosis and reduced neurogenesis are associated to the onset of depression, Prog. Neuropsychopharmacol. Biol. Psychiatry, 35, 744-759, https://doi.org/10.1016/j.pnpbp.2010.08.026.

    Article  CAS  PubMed  Google Scholar 

  12. Setiawan, E., Wilson, A. A., Mizrahi, R., Rusjan, P. M., Miler, L., et al. (2015) Role of translocator protein density, a marker of neuroinflammation, in the brain during major depressive episodes, JAMA Psychiatry, 72, 268, https://doi.org/10.1001/jamapsychiatry.2014.2427.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Wang, Y., Cui, X. L., Liu, Y. F., Gao, F., Wei, D., et al. (2011) LPS inhibits the effects of fluoxetine on depression-like behavior and hippocampal neurogenesis in rats, Prog. Neuropsychopharmacol. Biol. Psychiatry, 35, 1831-5, https://doi.org/10.1016/j.pnpbp.2011.07.004.

    Article  CAS  PubMed  Google Scholar 

  14. Zeisel, A., Hochgerner, H., Lönnerberg, P., Johnsson, A., Memic, F., et al. (2018) Molecular architecture of the mouse nervous system, Cell, 174, 999-1014.e22, https://doi.org/10.1016/j.cell.2018.06.021.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Pisanu, A., Lecca, D., Mulas, G., Wardas, J., Simbula, G., et al. (2014) Dynamic changes in pro- and anti-inflammatory cytokines in microglia after PPAR-γ agonist neuroprotective treatment in the MPTPp mouse model of progressive Parkinson’s disease, Neurobiol. Dis., 71, 280-291, https://doi.org/10.1016/j.nbd.2014.08.011.

    Article  CAS  PubMed  Google Scholar 

  16. Tremblay, M. È., and Sierra, A. (2014) Microglia in Health and Disease. Chapter 1. Introduction, https://doi.org/10.1007/978-1-4939-1429-6.

  17. Tang, Z., Gan, Y., Liu, Q., Yin, J. X., Liu, Q., Shi, J., and Shi, F. D. (2014) CX3CR1 deficiency suppresses activation and neurotoxicity of microglia/macrophage in experimental ischemic stroke, J. Neuroinflammation, 11, 26, https://doi.org/10.1186/1742-2094-11-26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Lee, S., Varvel, N. H., Konerth, M. E., Xu, G., Cardona, A. E., et al. (2010) CX3CR1 deficiency alters microglial activation and reduces beta-amyloid deposition in two Alzheimer’s disease mouse models, Am. J. Pathol., 177, 2549-2562, https://doi.org/10.2353/ajpath.2010.100265.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Hellwig, S., Brioschi, S., Dieni, S., Frings, L., Masuch, A., et al. (2016) Altered microglia morphology and higher resilience to stress-induced depression-like behavior in CX3CR1-deficient mice, Brain. Behav. Immun., 55, 126-137, https://doi.org/10.1016/j.bbi.2015.11.008.

    Article  PubMed  Google Scholar 

  20. Ridderstad Wollberg, A., Ericsson-Dahlstrand, A., Juréus, A., Ekerot, P., Simon, S., et al. (2014) Pharmacological inhibition of the chemokine receptor CX3CR1 attenuates disease in a chronic-relapsing rat model for multiple sclerosis, Proc. Natl. Acad. Sci. USA, 111, 5409-5414, https://doi.org/10.1073/pnas.1316510111.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Rogers, J. T., Morganti, J. M., Bachstetter, A. D., Hudson, C. E., Peters, M. M., et al. (2011) CX3CR1 deficiency leads to impairment of hippocampal cognitive function and synaptic plasticity, J. Neurosci., 31, 16241-16250, https://doi.org/10.1523/JNEUROSCI.3667-11.2011.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Boldrini, M., Santiago, A. N., Hen, R., Dwork, A. J., Rosoklija, G. B., et al. (2013) Hippocampal granule neuron number and dentate gyrus volume in antidepressant-treated and untreated major depression, Neuropsychopharmacology, 38, 1068-1077, https://doi.org/10.1038/npp.2013.5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Gulyaeva, N. V. (2015) Ventral hippocampus, stress and phychopathology: translational implications, Neurochem. J., 9, 85-94, https://doi.org/10.1134/S1819712415020075.

    Article  CAS  Google Scholar 

  24. Maggio, N., and Segal, M. (2012) Steroid modulation of hippocampal plasticity: switching between cognitive and emotional memories, Front. Cell Neurosci., 6, 12, https://doi.org/10.3389/fncel.2012.00012.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Gulyaeva, N. V. (2019) Functional neurochemistry of the ventral and dorsal hippocampus: stress, depression, dementia and remote hippocampal damage, Neurochem. Res., 44, 1306-1322, https://doi.org/10.1007/s11064-018-2662-0.

    Article  CAS  PubMed  Google Scholar 

  26. Mahar, I., Bambico, F. R., Mechawar, N., and Nobrega, J. N. (2014) Stress, serotonin, and hippocampal neurogenesis in relation to depression and antidepressant effects, Neurosci. Biobehav. Rev., 38, 173-192, https://doi.org/10.1016/j.neubiorev.2013.11.009.

    Article  CAS  PubMed  Google Scholar 

  27. Podgorny, O. V., and Gulyaeva, N. V. (2020) Glucocorticoid‐mediated mechanisms of hippocampal damage: contribution of subgranular neurogenesis, J. Neurochem., https://doi.org/10.1111/jnc.15265.

    Article  PubMed  Google Scholar 

  28. Zhang, T. Y., Keown, C. L., Wen, X., Li, J., Vousden, D. A., Anacker, C., et al. (2018) Environmental enrichment increases transcriptional and epigenetic differentiation between mouse dorsal and ventral dentate gyrus, Nat. Commun., 9, 1-11, https://doi.org/10.1038/s41467-017-02748-x.

    Article  CAS  Google Scholar 

  29. Floriou-Servou, A., Ziegler, L., von Stalder, L., Sturman, O., Privitera, M., et al. (2018) Distinct proteomic, transcriptomic, and epigenetic stress responses in dorsal and ventral hippocampus, Biol. Psychiatry, 84, 531-541, https://doi.org/10.1016/j.biopsych.2018.02.003.

    Article  CAS  PubMed  Google Scholar 

  30. Kvichansky, A. A., Volobueva, M. N., Manolova, A. O., Bolshakov, A. P., and Gulyaeva, N. V. (2017) Neonatal proinflammatory stress alters the expression of genes of corticosteroid receptors in the rat hippocampus: septo-temporal differences, Neurochem. J., 11, 255-258, https://doi.org/10.1134/S1819712417030059.

    Article  CAS  Google Scholar 

  31. Kvichansky, A. A., Volobueva, M. N., Manolova, A. O., Bolshakov, A. P., and Gulyaeva, N. V. (2018) The influence of neonatal pro-inflammatory stress on the expression of genes associated with stress in the brains of juvenile rats: septo-temporal specificity, Neurochem. J., 12, 180-183, https://doi.org/10.1134/s1819712418020083.

    Article  CAS  Google Scholar 

  32. Tenk, C. M., Kavaliers, M., and Ossenkopp, K. P. (2008) Sexually dimorphic effects of neonatal immune system activation with lipopolysaccharide on the behavioural response to a homotypic adult immune challenge, Int. J. Dev. Neurosci., 26, 331-338, https://doi.org/10.1016/j.ijdevneu.2008.01.001.

    Article  CAS  PubMed  Google Scholar 

  33. Walker, A. K., Nakamura, T., Byrne, R. J., Naicker, S., Tynan, R. J., et al. (2009) Neonatal lipopolysaccharide and adult stress exposure predisposes rats to anxiety-like behaviour and blunted corticosterone responses: implications for the double-hit hypothesis, Psychoneuroendocrinology, 34, 1515-1525, https://doi.org/10.1016/j.psyneuen.2009.05.010.

    Article  CAS  PubMed  Google Scholar 

  34. Sarkisova, K. Y., Kulikov, M. A., Kudrin, V. S., Midzyanovskaya, I. S., and Birioukova, L. M. (2014) Age-related changes in behavior, in monoamines and their metabolites content, and in density of Dl and D2 dopamine receptors in the brain structures of WAG/Rij rats with depression-like pathology, Zhurn. Vyss. Nervn. Deyatelnosti Im. I. P. Pavlova, 64, 668-685, https://doi.org/10.7868/S0044467714060094.

    Article  Google Scholar 

  35. Ma, L., Xu, Y., Wang, G., and Li, R. (2019) What do we know about sex differences in depression: a review of animal models and potential mechanisms, Prog. Neuropsychopharmacol. Biol. Psychiatry, 89, 48-56, https://doi.org/10.1016/j.pnpbp.2018.08.026.

    Article  PubMed  Google Scholar 

  36. Dobryakova, Y. V., Kasianov, A., Zaichenko, M. I., Stepanichev, M. Y., Chesnokova, E. A., et al. (2018) Intracerebroventricular administration of 192IgG-saporin alters expression of microglia-associated genes in the dorsal but not ventral hippocampus, Front. Mol. Neurosci., 10, https://doi.org/10.3389/fnmol.2017.00429.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Paxinos, G., Watson, C., Diego, S., Boston, L., and York, N. (1997) The Rat Brainin Stereotaxic Coordinates Academic Press, available at: http://www.apnet.com (accessed on 9 February 2021).

  38. Young, K., and Morrison, H. (2018) Quantifying microglia morphology from photomicrographs of immunohistochemistry prepared tissue using imagej, J. Vis. Exp., 2018, 57648, https://doi.org/10.3791/57648.

    Article  Google Scholar 

  39. Stepanichev, M. Y., Goryakina, T., Manolova, A., Lazareva, N., Kvichanskii, A., et al. (2021) Neonatal proinflammatory challenge evokes a microglial response and affects the ratio between subtypes of GABAergic interneurons in the hippocampus of juvenile rats: sex-dependent and sex-independent effects, Brain Struct. Funct., 1, 3, https://doi.org/10.1007/s00429-020-02199-z.

    Article  CAS  Google Scholar 

  40. Ramirez, K., Shea, D. T., McKim, D. B., Reader, B. F., and Sheridan, J. F. (2015) Imipramine attenuates neuroinflammatory signaling and reverses stress-induced social avoidance, Brain. Behav. Immun., 46, 212-220, https://doi.org/10.1016/j.bbi.2015.01.016.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Verboogen, D. R. J., Revelo, N. H., Ter Beest, M., and van der Bogaart, G. (2019) Interleukin-6 secretion is limited by self-signaling in endosomes, J. Mol. Cell Biol., 11, 144-157, https://doi.org/10.1093/jmcb/mjy038.

    Article  CAS  PubMed  Google Scholar 

  42. Kimura, A., and Kishimoto, T. (2010) IL-6: regulator of Treg/Th17 balance, Eur. J. Immunol., 40, 1830-1835, https://doi.org/10.1002/eji.201040391.

    Article  CAS  PubMed  Google Scholar 

  43. Hong, M., Zheng, J., Ding, Z.-Y., Chen, J.-H., Yu, L., et al. (2013) Imbalance between Th17 and Treg cells may play an important role in the development of chronic unpredictable mild stress-induced depression in mice, Neuroimmunomodulation, 20, 39-50, https://doi.org/10.1159/000343100.

    Article  CAS  PubMed  Google Scholar 

  44. Sheridan, G. K., and Murphy, K. J. (2013) Neuron-glia crosstalk in health and disease: fractalkine and CX3CR1 take centre stage, Open Biol., 3, 130181, https://doi.org/10.1098/rsob.130181.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Hughes, P. M., Botham, M. S., Frentzel, S., Mir, A., and Perry, V. H. (2002) Expression of fractalkine (CX3CL1) and its receptor, CX3CR1, during acute and chronic inflammation in the rodent CNS, Glia, 37, 314-327, https://doi.org/10.1002/glia.10037.

    Article  PubMed  Google Scholar 

  46. Bollinger, J. L., Collins, K. E., Patel, R., and Wellman, C. L. (2017) Behavioral stress alters corticolimbic microglia in a sex- and brain region-specific manner, PLoS One, 12, https://doi.org/10.1371/journal.pone.0187631.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was financially supported by the State Budget Program and State Task of the Ministry of Education and Science of the Russian Federation (animal behavior) and by the Russian Science Foundation (project no. 19-75-00063, morphology of microglia).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexey A. Kvichansky.

Ethics declarations

The authors declare no conflict of interest in financial or any other sphere. All applicable international, national, and/or institutional guidelines for the care and use of animals were followed.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kvichansky, A.A., Tret’yakova, L.V., Volobueva, M.N. et al. Neonatal Proinflammatory Stress and Expression of Neuroinflammation-Associated Genes in the Rat Hippocampus. Biochemistry Moscow 86, 693–703 (2021). https://doi.org/10.1134/S0006297921060079

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006297921060079

Keywords

Navigation