Skip to main content
Log in

Blood–Brain Barrier Breakdown in Stress and Neurodegeneration: Biochemical Mechanisms and New Models for Translational Research

  • REVIEW
  • Published:
Biochemistry (Moscow) Aims and scope Submit manuscript

Abstract

Blood-brain barrier (BBB) is a structural and functional element of the neurovascular unit (NVU), which includes cells of neuronal, glial, and endothelial nature. The main functions of NVU include maintenance of the control of metabolism and chemical homeostasis in the brain tissue, ensuring adequate blood flow in active regions, regulation of neuroplasticity processes, which is realized through intercellular interactions under normal conditions, under stress, in neurodegeneration, neuroinfection, and neurodevelopmental diseases. Current versions of the BBB and NVU models, static and dynamic, have significantly expanded research capabilities, but a number of issues remain unresolved, in particular, personification of the models for a patient. In addition, application of both static and dynamic models has an important problem associated with the difficulty in reproducing pathophysiological mechanisms responsible for the damage of the structural and functional integrity of the barrier in the diseases of the central nervous system. More knowledge on the cellular and molecular mechanisms of BBB and NVU damage in pathology is required to solve this problem. This review discusses current state of the cellular and molecular mechanisms that control BBB permeability, pathobiochemical mechanisms and manifestations of BBB breakdown in stress and neurodegenerative diseases, as well as the problems and prospects of creating in vitro BBB and NVU models for translational studies in neurology and neuropharmacology. Deciphering BBB (patho)physiology will open up new opportunities for further development in the related areas of medicine such as regenerative medicine, neuropharmacology, and neurorehabilitation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

Similar content being viewed by others

Abbreviations

Aβ:

amyloid-beta

APP:

amyloid-beta precursor protein

BBB:

blood–brain barrier

CNS:

central nervous system

iPSCs:

induced pluripotent stem cells

NVU:

neurovascular unit

P‑gp:

P-glycoprotein

TEER:

transendothelial electric resistance

References

  1. Khilazheva, E. D., Boytsova, E. B., Pozhilenkova, E. A., Solonchuk, Y. R., and Salmina, A. B. (2015) Obtaining a three-cell model of a neurovascular unit in vitro, Cell Tissue Biol., 9, 447-451, https://doi.org/10.1134/s1990519x15060048.

    Article  Google Scholar 

  2. Tohidpour, A., Morgun, A. V., Boitsova, E. B., Malinovskaya, N. A., Martynova, G. P., et al. (2017) Neuroinflammation and infection: molecular mechanisms associated with dysfunction of neurovascular unit, Front. Cell Infect. Microbiol., 7, 276, https://doi.org/10.3389/fcimb.2017.00276.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Morgun, A. V., Kuvacheva, N. V., Taranushenko, T. E., Khilazheva, E. D., Malinovskaya, N. A., et al. (2013) Modern insights into pathogenesis of perinatal ischemic damage in cells of the cerebral neurovascular unit: targets molecules for neuroinflammation [in Russian], Vestnik Ross. Akad. Med. Nauk, 68, 26-35, https://doi.org/10.15690/vramn.v68i12.856.

    Article  Google Scholar 

  4. Osipova, E. D., Komleva, Y. K., Morgun, A. V., Lopatina, O. L., Panina, Y. A., et al. (2018) Designing in vitro blood-brain barrier models reproducing alterations in brain aging, Front. Aging Neurosci., 10, 234-234, https://doi.org/10.3389/fnagi.2018.00234.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Salmina, A., Morgun, A., Kuvacheva, N., Lopatina, O., Komleva, Y., et al. (2014) Establishment of neurogenic microenvironment in the neurovascular unit: the connexin 43 story, Rev. Neurosci., 25, 1-15, https://doi.org/10.1515/revneuro-2013-0044.

    Article  CAS  Google Scholar 

  6. Sharma, B., Luhach, K., and Kulkarni, G. T. (2019) 4 – In vitro and in vivo models of BBB to evaluate brain targeting drug delivery, in Brain Targeted Drug Delivery System (Gao, H., and Gao, X., eds.) Academic Press, pp. 53-101.

  7. Mabondzo, A., Bottlaender, M., Guyot, A. C., Tsaouin, K., Deverre, J. R., and Balimane, P. V. (2010) Validation of in vitro cell-based human blood-brain barrier model using clinical positron emission tomography radioligands to predict in vivo human brain penetration, Mol. Pharm., 7, 1805-1815, https://doi.org/10.1021/mp1002366.

    Article  CAS  PubMed  Google Scholar 

  8. Cho, C. F., Wolfe, J. M., Fadzen, C. M., Calligaris, D., Hornburg, K., et al. (2017) Blood-brain-barrier spheroids as an in vitro screening platform for brain-penetrating agents, Nat. Commun., 8, 15623, https://doi.org/10.1038/ncomms15623.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Appelt-Menzel, A., Cubukova, A., Günther, K., Edenhofer, F., Piontek, J., et al. (2017) Establishment of a human blood-brain barrier co-culture model mimicking the neurovascular unit using induced pluri- and multipotent stem cells, Stem Cell Rep., 8, 894-906, https://doi.org/10.1016/j.stemcr.2017.02.021.

    Article  CAS  Google Scholar 

  10. Bonakdar, M., Graybill, P. M., and Davalos, R. V. (2017) A microfluidic model of the blood–brain barrier to study permeabilization by pulsed electric fields, RSC Adv., 7, 42811-42818, https://doi.org/10.1039/c7ra07603g.

    Article  CAS  PubMed  Google Scholar 

  11. Lu, T. M., Houghton, S., Magdeldin, T., Durán, J. G. B., Minotti, A. P., et al. (2021) Pluripotent stem cell-derived epithelium misidentified as brain microvascular endothelium requires ETS factors to acquire vascular fate, Proc. Natl. Acad. Sci. USA, 118, e2016950118, https://doi.org/10.1073/pnas.2016950118.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Knowland, D., Arac, A., Sekiguchi, K. J., Hsu, M., Lutz, S. E., et al. (2014) Stepwise recruitment of transcellular and paracellular pathways underlies blood-brain barrier breakdown in stroke, Neuron, 82, 603-617, https://doi.org/10.1016/j.neuron.2014.03.003.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Wimmer, I., Tietz, S., Nishihara, H., Deutsch, U., Sallusto, F., et al. (2019) PECAM-1 stabilizes blood-brain barrier integrity and favors paracellular T-cell diapedesis across the blood-brain barrier during neuroinflammation, Front. Immunol., 10, https://doi.org/10.3389/fimmu.2019.00711.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. De Bock, M., Van Haver, V., Vandenbroucke, R. E., Decrock, E., Wang, N., and Leybaert, L. (2016) Into rather unexplored terrain-transcellular transport across the blood-brain barrier, Glia, 64, 1097-1123, https://doi.org/10.1002/glia.22960.

    Article  PubMed  Google Scholar 

  15. Kaplan, L., Chow, B. W., and Gu, C. (2020) Neuronal regulation of the blood-brain barrier and neurovascular coupling, Nat. Rev. Neurosci., 21, 416-432, https://doi.org/10.1038/s41583-020-0322-2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Stamatovic, S. M., Keep, R. F., and Andjelkovic, A. V. (2008) Brain endothelial cell–cell junctions: how to “open” the blood brain barrier, Curr. Neuropharmacol., 6, 179-192, https://doi.org/10.2174/157015908785777210.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Erickson, M. A., Wilson, M. L., and Banks, W. A. (2020) In vitro modeling of blood-brain barrier and interface functions in neuroimmune communication, Fluids Barr. CNS, 17, 26-26, https://doi.org/10.1186/s12987-020-00187-3.

    Article  Google Scholar 

  18. González-Mariscal, L., Betanzos, A., Nava, P., and Jaramillo, B. E. (2003) Tight junction proteins, Prog. Biophys. Mol. Biol., 81, 1-44, https://doi.org/10.1016/s0079-6107(02)00037-8.

    Article  PubMed  Google Scholar 

  19. Rhett, J. M., Jourdan, J., and Gourdie, R. G. (2011) Connexin 43 connexon to gap junction transition is regulated by zonula occludens-1, Mol. Biol. Cell, 22, 1516-1528, https://doi.org/10.1091/mbc.E10-06-0548.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Tornabene, E., Helms, H. C. C., Pedersen, S. F., and Brodin, B. (2019) Effects of oxygen-glucose deprivation (OGD) on barrier properties and mRNA transcript levels of selected marker proteins in brain endothelial cells/astrocyte co-cultures, PLoS One, 14, e0221103, https://doi.org/10.1371/journal.pone.0221103.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Basu, R., and Das Sarma, J. (2018) Connexin 43/47 channels are important for astrocyte/oligodendrocyte cross-talk in myelination and demyelination, J. Biosci., 43, 1055-1068, https://doi.org/10.1007/s12038-018-9811-0.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Johnson, A. M., Roach, J. P., Hu, A., Stamatovic, S. M., Zochowski, M. R., et al. (2018) Connexin 43 gap junctions contribute to brain endothelial barrier hyperpermeability in familial cerebral cavernous malformations type III by modulating tight junction structure, FASEB J., 32, 2615-2629, https://doi.org/10.1096/fj.201700699R.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Contreras, J. E., Sánchez, H. A., Eugenin, E. A., Speidel, D., Theis, M., et al. (2002) Metabolic inhibition induces opening of unapposed connexin 43 gap junction hemichannels and reduces gap junctional communication in cortical astrocytes in culture, Proc. Natl. Acad. Sci. USA, 99, 495-500, https://doi.org/10.1073/pnas.012589799.

    Article  CAS  PubMed  Google Scholar 

  24. Salmina, A., Inzhutova, A., Morgun, A., Okuneva, O., Malinovskaia, N., et al. (2012) NAD+-converting enzymes in neuronal and glial cells: CD38 as a novel target for neuroprotection, Vestnik Rossiĭskoĭ Akademii Meditsinskikh Nauk/Rossiĭskaia Akademiia Meditsinskikh Nauk, 67, 29-37, https://doi.org/10.15690/vramn.v67i10.413.

    Article  Google Scholar 

  25. Alla, B. S., Raissa Ya, O., Mami, N., and Haruhiro, H. (2006) ADP‑ribosyl cyclase as a therapeutic target for central nervous system diseases, Central Nervous System Agents Med. Chem., 6, 193-210, https://doi.org/10.2174/187152406778226699.

    Article  Google Scholar 

  26. Yao, L., Xue, X., Yu, P., Ni, Y., and Chen, F. (2018) Evans blue dye: a revisit of its applications in biomedicine, Contrast Media Mol. Imaging, 73, 1-10, https://doi.org/10.1155/2018/7628037.

    Article  CAS  Google Scholar 

  27. Mathiesen Janiurek, M., Soylu-Kucharz, R., Christoffersen, C., Kucharz, K., and Lauritzen, M. (2019) Apolipoprotein M-bound sphingosine-1-phosphate regulates blood-brain barrier paracellular permeability and transcytosis, eLife, 8, e49405, https://doi.org/10.7554/eLife.49405.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Forcione, M., Chiarelli, A. M., Davies, D. J., Perpetuini, D., Sawosz, P., et al. (2020) Cerebral perfusion and blood-brain barrier assessment in brain trauma using contrast-enhanced near-infrared spectroscopy with indocyanine green: a review, J. Cereb. Blood Flow Metab., 40, 1586-1598, https://doi.org/10.1177/0271678x20921973.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Israeli, D., Tanne, D., Daniels, D., Last, D., Shneor, R., et al. (2011) The Application of MRI for depiction of subtle blood brain barrier disruption in stroke, Int. J. Biol. Sci., 7, 1-8, https://doi.org/10.7150/ijbs.7.1.

    Article  Google Scholar 

  30. Heye, A. K., Culling, R. D., Valdés Hernández, M. D. C., Thrippleton, M. J., and Wardlaw, J. M. (2014) Assessment of blood–brain barrier disruption using dynamic contrast-enhanced MRI. A systematic review, NeuroImage Clin., 6, 262-274, https://doi.org/10.1016/j.nicl.2014.09.002.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Okada, M., Kikuchi, T., Okamura, T., Ikoma, Y., Tsuji, A. B., et al. (2015) In vivo imaging of blood-brain barrier permeability using positron emission tomography with 2-amino-[3-11C]isobutyric acid, Nucl. Med. Commun., 36, 1239-1248, https://doi.org/10.1097/mnm.0000000000000385.

    Article  CAS  PubMed  Google Scholar 

  32. Liang, Y., and Yoon, J.-Y. (2021) In situ sensors for blood-brain barrier (BBB) on a chip, Sensors Actuators Rep., 3, 100031, https://doi.org/10.1016/j.snr.2021.100031.

    Article  Google Scholar 

  33. Azarmi, M., Maleki, H., Nikkam, N., and Malekinejad, H. (2020) Transcellular brain drug delivery: a review on recent advancements, Int. J. Pharm., 586, 119582, https://doi.org/10.1016/j.ijpharm.2020.119582.

    Article  CAS  PubMed  Google Scholar 

  34. Winger, R. C., Koblinski, J. E., Kanda, T., Ransohoff, R. M., and Muller, W. A. (2014) Rapid remodeling of tight junctions during paracellular diapedesis in a human model of the blood-brain barrier, J. Immunol., 193, 2427-2437, https://doi.org/10.4049/jimmunol.1400700.

    Article  CAS  PubMed  Google Scholar 

  35. Winkler, L., Blasig, R., Breitkreuz-Korff, O., Berndt, P., Dithmer, S., et al. (2021) Tight junctions in the blood–brain barrier promote edema formation and infarct size in stroke – ambivalent effects of sealing proteins, J. Cereb. Blood Flow Metab., 41, 132-145, https://doi.org/10.1177/0271678x20904687.

    Article  CAS  PubMed  Google Scholar 

  36. Gao, X., Qian, J., Zheng, S., Changyi, Y., Zhang, J., et al. (2014) Overcoming the blood-brain barrier for delivering drugs into the brain by using adenosine receptor nanoagonist, ACS Nano, 8, 3678-3689, https://doi.org/10.1021/nn5003375.

    Article  CAS  PubMed  Google Scholar 

  37. Burgess, A., Shah, K., Hough, O., and Hynynen, K. (2015) Focused ultrasound-mediated drug delivery through the blood-brain barrier, Expert Rev. Neurother., 15, 477-491, https://doi.org/10.1586/14737175.2015.1028369.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Ahn, S. I., Sei, Y. J., Park, H.-J., Kim, J., Ryu, Y., et al. (2020) Microengineered human blood-brain barrier platform for understanding nanoparticle transport mechanisms, Nat. Commun., 11, 175, https://doi.org/10.1038/s41467-019-13896-7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Di Pardo, A., Amico, E., Scalabrì, F., Pepe, G., Castaldo, S., et al. (2017) Impairment of blood-brain barrier is an early event in R6/2 mouse model of Huntington disease, Sci. Rep., 7, 41316, https://doi.org/10.1038/srep41316.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Gray, M. T., and Woulfe, J. M. (2015) Striatal blood-brain barrier permeability in Parkinson’s disease, J. Cereb. Blood Flow Metab., 35, 747-750, https://doi.org/10.1038/jcbfm.2015.32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Greene, C., Hanley, N., and Campbell, M. (2020) Blood-brain barrier associated tight junction disruption is a hallmark feature of major psychiatric disorders, Translat. Psychiatry, 10, 373, https://doi.org/10.1038/s41398-020-01054-3.

    Article  CAS  Google Scholar 

  42. Cockerill, I., Oliver, J.-A., Xu, H., Fu, B. M., and Zhu, D. (2018) Blood-Brain Barrier Integrity and Clearance of Amyloid-β from the BBB, in Molecular, Cellular, and Tissue Engineering of the Vascular System (Fu, B. M., and Wright, N. T., eds.) Springer International Publishing, Cham, pp. 261-278.

  43. Xu, X., Zhu, L., Xue, K., Liu, J., Wang, J., et al. (2021) Ultrastructural studies of the neurovascular unit reveal enhanced endothelial transcytosis in hyperglycemia-enhanced hemorrhagic transformation after stroke, CNS Neurosci. Ther., 27, 123-133, https://doi.org/10.1111/cns.13571.

    Article  CAS  PubMed Central  Google Scholar 

  44. Van Assema, D. M. E., Lubberink, M., Boellaard, R., Schuit, R. C., Windhorst, A. D., et al. (2012) P‑glycoprotein function at the blood-brain barrier: effects of age and gender, Mol. Imaging Biol., 14, 771-776, https://doi.org/10.1007/s11307-012-0556-0.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Aryal, M., Fischer, K., Gentile, C., Gitto, S., Zhang, Y.-Z., and McDannold, N. (2017) Effects on P‑glycoprotein expression after blood-brain barrier disruption using focused ultrasound and microbubbles, PLoS One, 12, e0166061, https://doi.org/10.1371/journal.pone.0166061.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Wang, W., Bodles-Brakhop, A. M., and Barger, S. W. (2016) A role for P‑glycoprotein in clearance of Alzheimer amyloid β-peptide from the brain, Curr. Alzheimer Res., 13, 615-620, https://doi.org/10.2174/1567205013666160314151012.

    Article  CAS  PubMed  Google Scholar 

  47. Ristori, E., Donnini, S., and Ziche, M. (2020) New insights into blood-brain barrier maintenance: the homeostatic role of β-amyloid precursor protein in cerebral vasculature, Front. Physiol., 11, 1056-1056, https://doi.org/10.3389/fphys.2020.01056.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Geier, E. G., Chen, E. C., Webb, A., Papp, A. C., Yee, S. W., et al. (2013) Profiling solute carrier transporters in the human blood-brain barrier, Clin. Pharmacol. Ther., 94, 636-639, https://doi.org/10.1038/clpt.2013.175.

    Article  CAS  PubMed  Google Scholar 

  49. Goldeman, C., Andersen, M., Al-Robai, A., Buchholtz, T., Svane, N., et al. (2021) Human induced pluripotent stem cells (BIONi010-C) generate tight cell monolayers with blood-brain barrier traits and functional expression of large neutral amino acid transporter 1 (SLC7A5), Eur. J. Pharm. Sci., 156, 105577, https://doi.org/10.1016/j.ejps.2020.105577.

    Article  CAS  PubMed  Google Scholar 

  50. Omori, K., Tachikawa, M., Hirose, S., Taii, A., Akanuma, S. I., et al. (2020) Developmental changes in transporter and receptor protein expression levels at the rat blood-brain barrier based on quantitative targeted absolute proteomics, Drug Metab. Pharmacokinet., 35, 117-123, https://doi.org/10.1016/j.dmpk.2019.09.003.

    Article  CAS  PubMed  Google Scholar 

  51. Goldeman, C., Ozgür, B., and Brodin, B. (2020) Culture-induced changes in mRNA expression levels of efflux and SLC-transporters in brain endothelial cells, Fluids Barriers CNS, 17, 32, https://doi.org/10.1186/s12987-020-00193-5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Josserand, V., Pélerin, H., de Bruin, B., Jego, B., Kuhnast, B., et al. (2006) Evaluation of drug penetration into the brain: a double study by in vivo imaging with positron emission tomography and using an in vitro model of the human blood-brain barrier, J. Pharmacol. Exp. Ther., 316, 79-86, https://doi.org/10.1124/jpet.105.089102.

    Article  CAS  PubMed  Google Scholar 

  53. Roux, G. L., Jarray, R., Guyot, A. C., Pavoni, S., Costa, N., et al. (2019) Proof-of-concept study of drug brain permeability between in vivo human brain and an in vitro iPSCs-human blood-brain barrier model, Sci. Rep., 9, 16310, https://doi.org/10.1038/s41598-019-52213-6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Li, Y., Sun, X., Liu, H., Huang, L., Meng, G., et al. (2019) Development of human in vitro brain-blood barrier model from induced pluripotent stem cell-derived endothelial cells to predict the in vivo permeability of drugs, Neurosci. Bull., 35, 996-1010, https://doi.org/10.1007/s12264-019-00384-7.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Feng, W., Zhang, C., Yu, T., Semyachkina-Glushkovskaya, O., and Zhu, D. (2019) In vivo monitoring blood-brain barrier permeability using spectral imaging through optical clearing skull window, J. Biophotonics, 12, e201800330, https://doi.org/10.1002/jbio.201800330.

    Article  CAS  PubMed  Google Scholar 

  56. Semyachkina-Glushkovskaya, O., Chehonin, V., Borisova, E., Fedosov, I., Namykin, A., et al. (2018) Photodynamic opening of the blood-brain barrier and pathways of brain clearing, J. Biophotonics, 11, e201700287, https://doi.org/10.1002/jbio.201700287.

    Article  CAS  PubMed  Google Scholar 

  57. Kluge, M. A., Fetterman, J. L., and Vita, J. A. (2013) Mitochondria and endothelial function, Circ. Res., 112, 1171-1188, https://doi.org/10.1161/circresaha.111.300233.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Doll, D. N., Hu, H., Sun, J., Lewis, S. E., Simpkins, J. W., and Ren, X. (2015) Mitochondrial crisis in cerebrovascular endothelial cells opens the blood-brain barrier, Stroke, 46, 1681-1689, https://doi.org/10.1161/strokeaha.115.009099.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Malinovskaya, N. A., Komleva, Y. K., Salmin, V. V., Morgun, A. V., Shuvaev, A. N., et al. (2016) Endothelial progenitor cells physiology and metabolic plasticity in brain angiogenesis and blood-brain barrier modeling, Front. Physiol., 7, https://doi.org/10.3389/fphys.2016.00599.

    Article  PubMed  PubMed Central  Google Scholar 

  60. Salmina, A. B., Kuvacheva, N. V., Morgun, A. V., Komleva, Y. K., Pozhilenkova, E. A., et al. (2015) Glycolysis-mediated control of blood-brain barrier development and function, Int. J. Biochem. Cell Biol., 64, 174-184, https://doi.org/10.1016/j.biocel.2015.04.005.

    Article  CAS  PubMed  Google Scholar 

  61. Khilazheva, E. D., Kuvacheva, N. V., Morgun, A. V., Boitsova, E. B., Malinovskaya, N. A., et al. (2016) Modulation of lactate production, transport and reception by cells in the model of brain neurovascular unit, Eksp. Klin. Farmakol., 79, 7-12.

    CAS  PubMed  Google Scholar 

  62. Verdegem, D., Moens, S., Stapor, P., and Carmeliet, P. (2014) Endothelial cell metabolism: parallels and divergences with cancer cell metabolism, Cancer Metab., 2, 19, https://doi.org/10.1186/2049-3002-2-19.

    Article  PubMed  PubMed Central  Google Scholar 

  63. Boitsova, E. B., Morgun, A. V., Osipova, E. D., Pozhilenkova, E. A., Martinova, G. P., et al. (2018) The inhibitory effect of LPS on the expression of GPR81 lactate receptor in blood-brain barrier model in vitro, J. Neuroinflammation, 15, 196-196, https://doi.org/10.1186/s12974-018-1233-2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Pluimer, B. R., Colt, M., and Zhao, Z. (2020) G protein-coupled receptors in the mammalian blood-brain barrier, Front. Cell Neurosci., 14, 139-139, https://doi.org/10.3389/fncel.2020.00139.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Kim, D. G., Jang, M., Choi, S. H., Kim, H. J., Jhun, H., et al. (2018) Gintonin, a ginseng-derived exogenous lysophosphatidic acid receptor ligand, enhances blood-brain barrier permeability and brain delivery, Int. J. Biol. Macromol., 114, 1325-1337, https://doi.org/10.1016/j.ijbiomac.2018.03.158.

    Article  CAS  PubMed  Google Scholar 

  66. Pozhilenkova, E. A., Lopatina, O. L., Komleva, Y. K., Salmin, V. V., and Salmina, A. B. (2017) Blood-brain barrier-supported neurogenesis in healthy and diseased brain, Rev. Neurosci., 28, 397-415, https://doi.org/10.1515/revneuro-2016-0071.

    Article  PubMed  Google Scholar 

  67. Osipova, E. D., Semyachkina-Glushkovskaya, O. V., Morgun, A. V., Pisareva, N. V., Malinovskaya, N. A., et al. (2018) Gliotransmitters and cytokines in the control of blood-brain barrier permeability, Rev. Neurosci., 29, 567-591, https://doi.org/10.1515/revneuro-2017-0092.

    Article  CAS  PubMed  Google Scholar 

  68. Haruwaka, K., Ikegami, A., Tachibana, Y., Ohno, N., Konishi, H., et al. (2019) Dual microglia effects on blood brain barrier permeability induced by systemic inflammation, Nat. Commun., 10, 5816, https://doi.org/10.1038/s41467-019-13812-z.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Winkler, E. A., Sagare, A. P., and Zlokovic, B. V. (2014) The pericyte: a forgotten cell type with important implications for Alzheimer’s disease? Brain Pathol., 24, 371-386, https://doi.org/10.1111/bpa.12152.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Salmina, A. B., Komleva, Y. K., Lopatina, O. L., and Birbrair, A. (2019) Pericytes in Alzheimer’s disease: novel clues to cerebral amyloid angiopathy pathogenesis, Adv. Exp. Med. Biol., 1147, 147-166, https://doi.org/10.1007/978-3-030-16908-4_7.

    Article  CAS  PubMed  Google Scholar 

  71. Stone, N. L., England, T. J., and O’Sullivan, S. E. (2019) A novel transwell blood brain barrier model using primary human cells, Front. Cell Neurosci., 13, https://doi.org/10.3389/fncel.2019.00230.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Salmina, A. B., Gorina, Y. V., Erofeev, A. I., Balaban, P. M., Bezprozvanny, I. B., and Vlasova, O. L. (2021) Optogenetic and chemogenetic modulation of astroglial secretory phenotype, Rev. Neurosci., https://doi.org/10.1515/revneuro-2020-0119.

    Article  PubMed  Google Scholar 

  73. Xu, L., Nirwane, A., and Yao, Y. (2018) Basement membrane and blood-brain barrier, Stroke Vasc. Neurol., 4, 78-82, https://doi.org/10.1136/svn-2018-000198.

    Article  PubMed  PubMed Central  Google Scholar 

  74. Thomsen, M. S., Routhe, L. J., and Moos, T. (2017) The vascular basement membrane in the healthy and pathological brain, J. Cereb. Blood Flow Metab., 37, 3300-3317, https://doi.org/10.1177/0271678x17722436.

    Article  PubMed  PubMed Central  Google Scholar 

  75. Thomsen, M. S., Birkelund, S., Burkhart, A., Stensballe, A., and Moos, T. (2017) Synthesis and deposition of basement membrane proteins by primary brain capillary endothelial cells in a murine model of the blood-brain barrier, J. Neurochem., 140, 741-754, https://doi.org/10.1111/jnc.13747.

    Article  CAS  PubMed  Google Scholar 

  76. Kanda, H., Shimamura, R., Koizumi-Kitajima, M., and Okano, H. (2019) Degradation of extracellular matrix by matrix metalloproteinase 2 is essential for the establishment of the blood-brain barrier in Drosophila, iScience, 16, 218-229, https://doi.org/10.1016/j.isci.2019.05.027.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Muri, L., Leppert, D., Grandgirard, D., and Leib, S. L. (2019) MMPs and ADAMs in neurological infectious diseases and multiple sclerosis, Cell. Mol. Life Sci., 76, 3097-3116, https://doi.org/10.1007/s00018-019-03174-6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Ferro, M. P., Heilshorn, S. C., and Owens, R. M. (2020) Materials for blood brain barrier modeling in vitro, Mater. Sci. Eng. R Rep., 140, 100522, https://doi.org/10.1016/j.mser.2019.100522.

    Article  PubMed  PubMed Central  Google Scholar 

  79. Blanchette, M., and Daneman, R. (2015) Formation and maintenance of the BBB, Mech. Dev., 138, 8-16, https://doi.org/10.1016/j.mod.2015.07.007.

    Article  CAS  PubMed  Google Scholar 

  80. Saili, K. S., Zurlinden, T. J., Schwab, A. J., Silvin, A., Baker, N. C., et al. (2017) Blood-brain barrier development: Systems modeling and predictive toxicology, Birth Defects Res., 109, 1680-1710, https://doi.org/10.1002/bdr2.1180.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Ruzaeva, V. A., Morgun, A. V., Khilazheva, E. D., Kuvacheva, N. V., Pozhilenkova, E. A., et al. (2016) Development of blood-brain barrier under the modulation of HIF activity in astroglialand neuronal cells in vitro, Biomed. Khim., 62, 664-669, https://doi.org/10.18097/pbmc20166206664.

    Article  CAS  PubMed  Google Scholar 

  82. Biron, K. E., Dickstein, D. L., Gopaul, R., and Jefferies, W. A. (2011) Amyloid triggers extensive cerebral angiogenesis causing blood brain barrier permeability and hypervascularity in Alzheimer’s disease, PLoS One, 6, e23789, https://doi.org/10.1371/journal.pone.0023789.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Verheggen, I. C. M., de Jong, J. J. A., van Boxtel, M. P. J., Gronenschild, Ed. H. B. M., Palm, W. M., et al. (2020) Increase in blood–brain barrier leakage in healthy, older adults, GeroScience, 42, 1183-1193, https://doi.org/10.1007/s11357-020-00211-2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Skultétyová, I., Tokarev, D., and Jezová, D. (1998) Stress-induced increase in blood-brain barrier permeability in control and monosodium glutamate-treated rats, Brain Res. Bull., 45, 175-178, https://doi.org/10.1016/s0361-9230(97)00335-3.

    Article  PubMed  Google Scholar 

  85. Xu, G., Li, Y., Ma, C., Wang, C., Sun, Z., et al. (2019) Restraint stress induced hyperpermeability and damage of the blood-brain barrier in the amygdala of adult rats, Front. Mol. Neurosci., 12, 32-32, https://doi.org/10.3389/fnmol.2019.00032.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Lee, S., Kang, B.-M., Kim, J., Min, J., Kim, H., et al. (2018) Real-time in vivo two-photon imaging study reveals decreased cerebro-vascular volume and increased blood-brain barrier permeability in chronically stressed mice, Sci. Rep., 8, https://doi.org/10.1038/s41598-018-30875-y.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Semyachkina-Glushkovskaya, O., Esmat, A., Bragin, D., Bragina, O., Shirokov, A. A., et al. (2020) Phenomenon of music-induced opening of the blood-brain barrier in healthy mice, Proc. Biol. Sci., 287, 20202337-20202337, https://doi.org/10.1098/rspb.2020.2337.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Malinovskaya, N. A., Morgun, A. V., Lopatina, O. L., Panina, Y. A., Volkova, V. V., et al. (2018) Early life stress: consequences for the development of the brain, Neurosci. Behav. Physiol., 48, 233-250, https://doi.org/10.1007/s11055-018-0557-9.

    Article  Google Scholar 

  89. Lopatina, O. L., Panina, Y. A., Malinovskaya, N. A., and Salmina, A. B. (2021) Early life stress and brain plasticity: from molecular alterations to aberrant memory and behavior, Rev. Neurosci., 32, 131-142, https://doi.org/10.1515/revneuro-2020-0077.

    Article  PubMed  Google Scholar 

  90. Morgun, A. V., Kuvacheva, N. V., Khilazheva, E. D., Pozhilenkova, E. A., Gorina, Y. V., et al. (2016) Perinatal brain injury is accompanied by disturbances in expression of SLC protein superfamily in endotheliocytes of hippocampal microvessels, Bull. Exp. Biol. Med., 161, 770-774, https://doi.org/10.1007/s10517-016-3506-z.

    Article  CAS  PubMed  Google Scholar 

  91. Kuvacheva, N. V., Morgun, A. V., Malinovskaya, N. A., Gorina, Y. V., Khilazheva, E. D., et al. (2016) Tight junction proteins of cerebral endothelial cells in early postnatal development, Cell Tissue Biol., 10, 372-377, https://doi.org/10.1134/s1990519x16050084.

    Article  Google Scholar 

  92. Sweeney, M. D., Sagare, A. P., and Zlokovic, B. V. (2018) Blood-brain barrier breakdown in Alzheimer’s disease and other neurodegenerative disorders, Nat. Rev. Neurol., 14, 133-150, https://doi.org/10.1038/nrneurol.2017.188.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Zeppenfeld, D. M., Simon, M., Haswell, J. D., D’Abreo, D., Murchison, C., et al. (2017) Association of perivascular localization of aquaporin-4 with cognition and Alzheimer’s disease in aging brains, JAMA Neurol., 74, 91-99, https://doi.org/10.1001/jamaneurol.2016.4370.

    Article  PubMed  Google Scholar 

  94. Parodi-Rullán, R., Sone, J. Y., and Fossati, S. (2019) Endothelial mitochondrial dysfunction in cerebral amyloid angiopathy and Alzheimer’s disease, J. Alzheimer’s Disease, 72, 1019-1039, https://doi.org/10.3233/jad-190357.

    Article  Google Scholar 

  95. Gorina, Y., Salmina, A., Kuvacheva, N., Komleva, Y., Fedyukovich, L., et al. (2014) Neuroinflammation and insulin resistance in Alzheimer’s disease, Sib. Med. Rev., 11-19, https://doi.org/10.20333/25000136-2014-4-11-19.

    Article  Google Scholar 

  96. Thériault, P., ElAli, A., and Rivest, S. (2015) The dynamics of monocytes and microglia in Alzheimer’s disease, Alzheimer’s Res. Ther., 7, 41, https://doi.org/10.1186/s13195-015-0125-2.

    Article  CAS  Google Scholar 

  97. Kyrtsos, C. R., and Baras, J. S. (2015) Modeling the role of the glymphatic pathway and cerebral blood vessel properties in Alzheimer’s disease pathogenesis, PLoS One, 10, e0139574, https://doi.org/10.1371/journal.pone.0139574.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Jia, Y., Wang, N., Zhang, Y., Xue, D., Lou, H., and Liu, X. (2020) Alteration in the function and expression of SLC and ABC transporters in the neurovascular unit in Alzheimer’s disease and the clinical significance, Aging Dis., 11, 390-404, https://doi.org/10.14336/ad.2019.0519.

    Article  PubMed  PubMed Central  Google Scholar 

  99. Sekhar, G. N., Fleckney, A. L., Boyanova, S. T., Rupawala, H., Lo, R., et al. (2019) Region-specific blood-brain barrier transporter changes leads to increased sensitivity to amisulpride in Alzheimer’s disease, Fluids Barriers CNS, 16, 38, https://doi.org/10.1186/s12987-019-0158-1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Zoufal, V., Wanek, T., Krohn, M., Mairinger, S., Filip, T., et al. (2020) Age dependency of cerebral P‑glycoprotein function in wild-type and APPPS1 mice measured with PET, J. Cereb. Blood Flow Metab., 40, 150-162, https://doi.org/10.1177/0271678x18806640.

    Article  CAS  PubMed  Google Scholar 

  101. Sagare, A. P., Bell, R. D., and Zlokovic, B. V. (2013) Neurovascular defects and faulty amyloid-β vascular clearance in Alzheimer’s disease, J. Alzheimer’s Dis., 33 Suppl 1, S87-100, https://doi.org/10.3233/jad-2012-129037.

    Article  Google Scholar 

  102. Wardlaw, J. M., Makin, S. J., Valdés Hernández, M. C., Armitage, P. A., Heye, A. K., et al. (2017) Blood-brain barrier failure as a core mechanism in cerebral small vessel disease and dementia: evidence from a cohort study, Alzheimer’s Dement., 13, 634-643, https://doi.org/10.1016/j.jalz.2016.09.006.

    Article  Google Scholar 

  103. Nation, D. A., Sweeney, M. D., Montagne, A., Sagare, A. P., D’Orazio, L. M., et al. (2019) Blood-brain barrier breakdown is an early biomarker of human cognitive dysfunction, Nat. Med., 25, 270-276, https://doi.org/10.1038/s41591-018-0297-y.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Montagne, A., Barnes, S. R., Sweeney, M. D., Halliday, M. R., Sagare, A. P., et al. (2015) Blood-brain barrier breakdown in the aging human hippocampus, Neuron, 85, 296-302, https://doi.org/10.1016/j.neuron.2014.12.032.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Desai Bradaric, B., Patel, A., Schneider, J. A., Carvey, P. M., and Hendey, B. (2012) Evidence for angiogenesis in Parkinson’s disease, incidental Lewy body disease, and progressive supranuclear palsy, J. Neural Transm. (Vienna), 119, 59-71, https://doi.org/10.1007/s00702-011-0684-8.

    Article  Google Scholar 

  106. Lim, R. G., Quan, C., Reyes-Ortiz, A. M., Lutz, S. E., Kedaigle, A. J., et al. (2017) Huntington’s disease iPSC-derived brain microvascular endothelial cells reveal WNT-mediated angiogenic and blood-brain barrier deficits, Cell Rep., 19, 1365-1377, https://doi.org/10.1016/j.celrep.2017.04.021.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Pan, Y., and Nicolazzo, J. A. (2018) Impact of aging, Alzheimer’s disease and Parkinson’s disease on the blood-brain barrier transport of therapeutics, Adv. Drug Deliv. Rev., 135, 62-74, https://doi.org/10.1016/j.addr.2018.04.009.

    Article  CAS  PubMed  Google Scholar 

  108. Chaves, C., Do, T. M., Cegarra, C., Roudières, V., Tolou, S., et al. (2020) Non-human primate blood-brain barrier and in vitro brain endothelium: from transcriptome to the establishment of a New model, Pharmaceutics, 12, https://doi.org/10.3390/pharmaceutics12100967.

    Article  CAS  PubMed Central  Google Scholar 

  109. Wevers, N. R., Kasi, D. G., Gray, T., Wilschut, K. J., Smith, B., et al. (2018) A perfused human blood-brain barrier on-a-chip for high-throughput assessment of barrier function and antibody transport, Fluids Barriers CNS, 15, 23, https://doi.org/10.1186/s12987-018-0108-3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Lee, S., Chung, M., and Li Jeon, N. (2018) 3D brain angiogenesis model to reconstitute maturation of functional human blood-brain barrier in vitro, bioRxiv, 471334, https://doi.org/10.1101/471334.

    Article  Google Scholar 

  111. Qian, T., Maguire, S. E., Canfield, S. G., Bao, X., Olson, W. R., et al. (2017) Directed differentiation of human pluripotent stem cells to blood-brain barrier endothelial cells, Sci. Adv., 3, e1701679, https://doi.org/10.1126/sciadv.1701679.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Hartlaub, A. M., McElroy, C. A., Maitre, N. L., and Hester, M. E. (2019) Modeling human brain circuitry using pluripotent stem cell platforms, Front. Pediatr., 7, https://doi.org/10.3389/fped.2019.00057.

    Article  PubMed  PubMed Central  Google Scholar 

  113. Grifno, G. N., Farrell, A. M., Linville, R. M., Arevalo, D., Kim, J. H., et al. (2019) Tissue-engineered blood-brain barrier models via directed differentiation of human induced pluripotent stem cells, Sci. Rep., 9, 13957-13957, https://doi.org/10.1038/s41598-019-50193-1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Huh, D., Leslie, D. C., Matthews, B. D., Fraser, J. P., Jurek, S., et al. (2012) A human disease model of drug toxicity-induced pulmonary edema in a lung-on-a-chip microdevice, Sci. Transl. Med., 4, 159ra147, https://doi.org/10.1126/scitranslmed.3004249.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Kortagere, S., Chekmarev, D., Welsh, W. J., and Ekins, S. (2008) New predictive models for blood-brain barrier permeability of drug-like molecules, Pharm. Res., 25, 1836-1845, https://doi.org/10.1007/s11095-008-9584-5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Wang, Z., Yang, H., Wu, Z., Wang, T., Li, W., Tang, Y., and Liu, G. (2018) In silico prediction of blood-brain barrier permeability of compounds by machine learning and resampling methods, ChemMedChem, 13, 2189-2201, https://doi.org/10.1002/cmdc.201800533.

    Article  CAS  PubMed  Google Scholar 

  117. DeStefano, J. G., Jamieson, J. J., Linville, R. M., and Searson, P. C. (2018) Benchmarking in vitro tissue-engineered blood-brain barrier models, Fluids Barriers CNS, 15, 32, https://doi.org/10.1186/s12987-018-0117-2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Elbakary, B., and Badhan, R. K. S. (2020) A dynamic perfusion based blood-brain barrier model for cytotoxicity testing and drug permeation, Sci. Rep., 10, 3788, https://doi.org/10.1038/s41598-020-60689-w.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Buchroithner, B., Mayr, S., Hauser, F., Priglinger, E., Stangl, H., et al. (2021) Dual channel microfluidics for mimicking the blood-brain barrier, ACS Nano, https://doi.org/10.1021/acsnano.0c09263.

    Article  PubMed  PubMed Central  Google Scholar 

  120. Miranda-Azpiazu, P., Panagiotou, S., Jose, G., and Saha, S. (2018) A novel dynamic multicellular co-culture system for studying individual blood-brain barrier cell types in brain diseases and cytotoxicity testing, Sci. Rep., 8, 8784, https://doi.org/10.1038/s41598-018-26480-8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Campisi, M., Shin, Y., Osaki, T., Hajal, C., Chiono, V., and Kamm, R. D. (2018) 3D self-organized microvascular model of the human blood-brain barrier with endothelial cells, pericytes and astrocytes, Biomaterials, 180, 117-129, https://doi.org/10.1016/j.biomaterials.2018.07.014.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was financially supported by the grant of the President of the Russian Federation for State Support for Leading Scientific Schools of the Russian Federation (# NSH-2547.2020.7).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alla B. Salmina.

Ethics declarations

The authors declare no conflict of interests in financial or any other sphere. This article does not contain any studies with human participants or animals performed by any of the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Salmina, A.B., Komleva, Y.K., Malinovskaya, N.A. et al. Blood–Brain Barrier Breakdown in Stress and Neurodegeneration: Biochemical Mechanisms and New Models for Translational Research. Biochemistry Moscow 86, 746–760 (2021). https://doi.org/10.1134/S0006297921060122

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006297921060122

Keywords

Navigation