Skip to main content
Log in

Prenatal Stress in Maternal Hyperhomocysteinemia: Impairments in the Fetal Nervous System Development and Placental Function

  • REVIEW
  • Published:
Biochemistry (Moscow) Aims and scope Submit manuscript

Abstract

The article presents current views on maternal hyperhomocysteinemia (HHcy) as an important factor causing prenatal stress and impaired nervous system development in fetuses and newborns in early ontogenesis, as well as complications in adulthood. Experimental data demonstrate that prenatal HHcy (PHHcy) affects the morphological maturation of the brain and activity of its neurotransmitter systems. Cognitive deficit observed in the offspring subjected to PHHcy in experimental studies can presumably cause the predisposition to various neurodegenerative diseases, as the role of maternal HHcy in the pathogenesis such diseases has been proven in clinical studies. The review also discusses molecular mechanisms of the HHcy neurotoxic action on the nervous system development in the prenatal and early postnatal periods, which include oxidative stress, apoptosis activation, changes in the DNA methylation patterns and microRNA levels, altered expression and processing of neurotrophins, and neuroinflammation induced by an increased production of pro-inflammatory cytokines. Special attention is given to the maternal HHcy impact on the placenta function and its possible contribution to the brain function impairments in the offspring. Published data suggest that some effects of PHHcy on the developing fetal brain can be due to the disturbances in the transport functions of the placenta resulting in an insufficient supply of nutrients necessary for the proper formation and functioning of brain structures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure.

Similar content being viewed by others

Abbreviations

BDNF:

brain-derived neurotrophic factor

CBS:

cystathionine β-synthase

CSE:

cystathionine γ-lyase

E:

day of embryonic development

F1:

first-generation progeny

Hcy:

homocysteine

HHcy:

hyperhomocysteinemia

MTHFR:

methylenetetrahydrofolate reductase

NGF:

nerve growth factor

P:

day of postnatal development

PHHcy:

prenatal hyperhomocysteinemia

SAH:

S-adenosylhomocysteine

SAM:

S-adenosylmethionine

References

  1. Boersma, G. J., Bale, T. L., Casanello, P., Lara, H. E., Lucion, A. B., et al. (2014) Long-term impact of early life events on physiology and behaviour, J. Neuroendocrinol., 26, 587-602, https://doi.org/10.1111/jne.12153.

    Article  CAS  PubMed  Google Scholar 

  2. Entringer, S., Buss, C., and Wadhwa, P. D. (2015) Prenatal stress, development, health and disease risk: a psychobiological perspective-2015 Curt Richter Award Paper, Psychoneuroendocrinology, 62, 366-75, https://doi.org/10.1016/j.psyneuen.2015.08.019.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Bolton, J. L., and Bilbo, S. D. (2014) Developmental programming of brain and behavior by perinatal diet: focus on inflammatory mechanisms, Dialogues Clin. Neurosci., 16, 307-320.

    Article  PubMed Central  PubMed  Google Scholar 

  4. Buss, C., Entringer, S., and Wadhwa, P. D. (2012) Fetal programming of brain development: intrauterine stress and susceptibility to psychopathology, Sci. Signal., 5, pt7, https://doi.org/10.1126/scisignal.2003406.

    Article  CAS  PubMed  Google Scholar 

  5. Cottrell, E. C., Seckl, J. R., Holmes, M. C., and Wyrwoll, C. S. (2014) Foetal and placental 11beta-HSD2: a hub for developmental programming, Acta Physiol. (Oxf), 210, 288-95, https://doi.org/10.1111/apha.12187.

    Article  CAS  Google Scholar 

  6. Marques, A. H., Bjorke-Monsen, A. L., Teixeira, A. L., and Silverman, M. N. (2015) Maternal stress, nutrition and physical activity: impact on immune function, CNS development and psychopathology, Brain Res., 1617, 28-46, https://doi.org/10.1016/j.brainres.2014.10.051.

    Article  CAS  PubMed  Google Scholar 

  7. Williams, J. H., and Ross, L. (2007) Consequences of prenatal toxin exposure for mental health in children and adolescents: a systematic review, Eur. Child Adolesc. Psychiatry, 16, 243-53, https://doi.org/10.1007/s00787-006-0596-6.

    Article  PubMed  Google Scholar 

  8. Boldyrev, A. A. (2009) Molecular mechanisms of homocysteine toxicity, Biochemistry (Moscow), 74, 589-598, https://doi.org/10.1134/s0006297909060017.

    Article  CAS  Google Scholar 

  9. Troen, A. M. (2005) The central nervous system in animal models of hyperhomocysteinemia, Prog. Neuropsychopharmacol. Biol. Psychiatry, 29, 1140-1151, https://doi.org/10.1016/j.pnpbp.2005.06.025.

    Article  CAS  PubMed  Google Scholar 

  10. Cascalheira, J. F., Parreira, M. C., Viegas, A. N., Faria, M. C., and Domingues, F. C. (2008) Serum homocysteine: relationship with circulating levels of cortisol and ascorbate, Ann. Nutr. Metab., 53, 67-74, https://doi.org/10.1159/000158636.

    Article  CAS  PubMed  Google Scholar 

  11. Stoney, C. M. (1999) Plasma homocysteine levels increase in women during psychological stress, Life Sci., 64, 2359-65, https://doi.org/10.1016/s0024-3205(99)00189-7.

    Article  CAS  PubMed  Google Scholar 

  12. Tallova, J., Bicikova, M., Hill, M., Tomandl, J., and Valentova, D. (2003) Homocysteine during the menstrual cycle in depressive women, Eur. J. Clin. Invest., 33, 268-273, https://doi.org/10.1046/j.1365-2362.2003.01087.x.

    Article  CAS  PubMed  Google Scholar 

  13. Zhao, Y., Wu, S., Gao, X., Zhang, Z., Gong, J., et al. (2013) Inhibition of cystathionine beta-synthase is associated with glucocorticoids over-secretion in psychological stress-induced hyperhomocysteinemia rat liver, Cell Stress Chaperones, 18, 631-641, https://doi.org/10.1007/s12192-013-0416-0.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Selhub, J. (1999) Homocysteine metabolism, Annu. Rev. Nutr., 19, 217-246, https://doi.org/10.1146/annurev.nutr.19.1.217.

    Article  CAS  PubMed  Google Scholar 

  15. Gueant, J. L., Namour, F., Gueant-Rodriguez, R. M., and Daval, J. L. (2013) Folate and fetal programming: a play in epigenomics? Trends Endocrinol. Metab., 24, 279-289, https://doi.org/10.1016/j.tem.2013.01.010.

    Article  CAS  PubMed  Google Scholar 

  16. Hannibal, L., and Blom, H. J. (2017) Homocysteine and disease: causal associations or epiphenomenons? Mol. Aspects Med., 53, 36-42, https://doi.org/10.1016/j.mam.2016.11.003.

    Article  CAS  PubMed  Google Scholar 

  17. James, S. J., Melnyk, S., Pogribna, M., Pogribny, I. P., and Caudill, M. A. (2002) Elevation in S-adenosylhomocysteine and DNA hypomethylation: potential epigenetic mechanism for homocysteine-related pathology, J. Nutr., 132, 2361S-2366S, https://doi.org/10.1093/jn/132.8.2361S.

    Article  CAS  PubMed  Google Scholar 

  18. Yang, Q., and He, G. W. (2019) Imbalance of homocysteine and H2S: significance, mechanisms, and therapeutic promise in vascular injury, Oxid. Med. Cell Longev., 2019, 7629673, https://doi.org/10.1155/2019/7629673.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Skovierova, H., Vidomanova, E., Mahmood, S., Sopkova, J., Drgova, A., et al. (2016) The molecular and cellular effect of homocysteine metabolism imbalance on human health, Int. J. Mol. Sci., 17, https://doi.org/10.3390/ijms17101733.

    Article  CAS  PubMed Central  Google Scholar 

  20. Vitvitsky, V., Thomas, M., Ghorpade, A., Gendelman, H. E., and Banerjee, R. (2006) A functional transsulfuration pathway in the brain links to glutathione homeostasis, J. Biol. Chem., 281, 35785-35793, https://doi.org/10.1074/jbc.M602799200.

    Article  CAS  PubMed  Google Scholar 

  21. Kamat, P. K., Kyles, P., Kalani, A., and Tyagi, N. (2016) Hydrogen sulfide ameliorates homocysteine-induced Alzheimer’s disease-like pathology, blood-brain barrier disruption, and synaptic disorder, Mol. Neurobiol., 53, 2451-2467, https://doi.org/10.1007/s12035-015-9212-4.

    Article  CAS  PubMed  Google Scholar 

  22. Kumar, M., Modi, M., and Sandhir, R. (2017) Hydrogen sulfide attenuates homocysteine-induced cognitive deficits and neurochemical alterations by improving endogenous hydrogen sulfide levels, Biofactors, 43, 434-450, https://doi.org/10.1002/biof.1354.

    Article  CAS  PubMed  Google Scholar 

  23. Kumar, M., and Sandhir, R. (2019) Hydrogen sulfide suppresses homocysteine-induced glial activation and inflammatory response, Nitric Oxide, 90, 15-28, https://doi.org/10.1016/j.niox.2019.05.008.

    Article  CAS  PubMed  Google Scholar 

  24. Patel, D., Rathinam, M., Jarvis, C., Mahimainathan, L., Henderson, G., et al. (2018) Role for cystathionine gamma lyase (CSE) in an ethanol (E)-induced lesion in fetal brain GSH homeostasis, Int. J. Mol. Sci., 19, https://doi.org/10.3390/ijms19051537.

    Article  CAS  PubMed Central  Google Scholar 

  25. Borowczyk, K., Shih, D. M., and Jakubowski, H. (2012) Metabolism and neurotoxicity of homocysteine thiolactone in mice: evidence for a protective role of paraoxonase 1, J. Alzheimer’s Dis., 30, 225-231, https://doi.org/10.3233/JAD-2012-111940.

    Article  CAS  Google Scholar 

  26. Kamudhamas, A., Pang, L., Smith, S. D., Sadovsky, Y., and Nelson, D. M. (2004) Homocysteine thiolactone induces apoptosis in cultured human trophoblasts: a mechanism for homocysteine-mediated placental dysfunction? Am. J. Obstet. Gynecol., 191, 563-571, https://doi.org/10.1016/j.ajog.2004.01.037.

    Article  CAS  PubMed  Google Scholar 

  27. Perla-Kajan, J., and Jakubowski, H. (2012) Paraoxonase 1 and homocysteine metabolism, Amino Acids, 43, 1405-1417, https://doi.org/10.1007/s00726-012-1321-z.

    Article  CAS  PubMed  Google Scholar 

  28. Sharma, G. S., Kumar, T., Dar, T. A., and Singh, L. R. (2015) Protein N-homocysteinylation: from cellular toxicity to neurodegeneration, Biochim. Biophys. Acta, 1850, 2239-45, https://doi.org/10.1016/j.bbagen.2015.08.013.

    Article  CAS  PubMed  Google Scholar 

  29. Herrmann, W., and Obeid, R. (2011) Homocysteine: a biomarker in neurodegenerative diseases, Clin. Chem. Lab. Med., 49, 435-441, https://doi.org/10.1515/CCLM.2011.084.

    Article  CAS  PubMed  Google Scholar 

  30. Sharma, M., Tiwari, M., and Tiwari, R. K. (2015) Hyperhomocysteinemia: impact on neurodegenerative diseases, Basic Clin. Pharmacol. Toxicol., 117, 287-296, https://doi.org/10.1111/bcpt.12424.

    Article  CAS  PubMed  Google Scholar 

  31. Kamat, P. K., Vacek, J. C., Kalani, A., and Tyagi, N. (2015) Homocysteine induced cerebrovascular dysfunction: a link to Alzheimer’s disease etiology, Open Neurol. J., 9, 9-14, https://doi.org/10.2174/1874205X01509010009.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Azzini, E., Ruggeri, S., and Polito, A. (2020) Homocysteine: Its possible emerging role in at-risk population groups, Int. J. Mol. Sci., 21, https://doi.org/10.3390/ijms21041421.

    Article  CAS  PubMed Central  Google Scholar 

  33. Zhuo, J. M., Wang, H., and Pratico, D. (2011) Is hyperhomocysteinemia an Alzheimer’s disease (AD) risk factor, an AD marker, or neither? Trends Pharmacol. Sci., 32, 562-571, https://doi.org/10.1016/j.tips.2011.05.003.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Weekman, E. M., Sudduth, T. L., Price, B. R., Woolums, A. E., Hawthorne, D., et al. (2019) Time course of neuropathological events in hyperhomocysteinemic amyloid depositing mice reveals early neuroinflammatory changes that precede amyloid changes and cerebrovascular events, J. Neuroinflammation, 16, 284, https://doi.org/10.1186/s12974-019-1685-z.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Degroote, S., Hunting, D., and Takser, L. (2018) Periconceptional folate deficiency leads to autism-like traits in Wistar rat offspring, Neurotoxicol. Teratol., 66, 132-138, https://doi.org/10.1016/j.ntt.2017.12.008.

    Article  CAS  PubMed  Google Scholar 

  36. Jozefczuk, J., Kasprzycka, W., Czarnecki, R., Graczyk, A., Jozefczuk, P., et al. (2017) Homocysteine as a diagnostic and etiopathogenic factor in children with autism spectrum disorder, J. Med. Food, 20, 744-749, https://doi.org/10.1089/jmf.2016.0150.

    Article  CAS  PubMed  Google Scholar 

  37. James, S. J., Melnyk, S., Jernigan, S., Pavliv, O., Trusty, T., et al. (2010) A functional polymorphism in the reduced folate carrier gene and DNA hypomethylation in mothers of children with autism, Am. J. Med. Genet. B Neuropsychiatr. Genet., 153B, 1209-1220, https://doi.org/10.1002/ajmg.b.31094.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Baydas, G., Koz, S. T., Tuzcu, M., Nedzvetsky, V. S., and Etem, E. (2007) Effects of maternal hyperhomocysteinemia induced by high methionine diet on the learning and memory performance in offspring, Int. J. Dev. Neurosci., 25, 133-139, https://doi.org/10.1016/j.ijdevneu.2007.03.001.

    Article  CAS  PubMed  Google Scholar 

  39. Koz, S. T., Gouwy, N. T., Demir, N., Nedzvetsky, V. S., Etem, E., and Baydas, G. (2010) Effects of maternal hyperhomocysteinemia induced by methionine intake on oxidative stress and apoptosis in pup rat brain, Int. J. Dev. Neurosci., 28, 325-329, https://doi.org/10.1016/j.ijdevneu.2010.02.006.

    Article  CAS  PubMed  Google Scholar 

  40. Blaise, S. A., Nedelec, E., Schroeder, H., Alberto, J. M., Bossenmeyer-Pourie, C., et al. (2007) Gestational vitamin B deficiency leads to homocysteine-associated brain apoptosis and alters neurobehavioral development in rats, Am. J. Pathol., 170, 667-679, https://doi.org/10.2353/ajpath.2007.060339.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Arutjunyan, A., Kozina, L., Stvolinskiy, S., Bulygina, Y., Mashkina, A., and Khavinson, V. (2012) Pinealon protects the rat offspring from prenatal hyperhomocysteinemia, Int. J. Clin. Exp. Med., 5, 179-185.

    PubMed  PubMed Central  Google Scholar 

  42. Shcherbitskaya, A. D., Milyutina, Y. P., Zaloznyaya, I. V., Arutjunyan, A. V., Nalivaeva, N. N., and Zhuravin, I. A. (2017) The effects of prenatal hyperhomocysteinemia on the formation of memory and the contents of biogenic amines in the rat hippocampus, Neurochem. J., 11, 296-301, https://doi.org/10.1134/s1819712417040080.

    Article  CAS  Google Scholar 

  43. Ars, C. L., Nijs, I. M., Marroun, H. E., Muetzel, R., Schmidt, M., et al. (2019) Prenatal folate, homocysteine and vitamin B12 levels and child brain volumes, cognitive development and psychological functioning: The Generation R Study, Br. J. Nutr., 122, S1-S9, https://doi.org/10.1017/s0007114515002081.

    Article  CAS  PubMed  Google Scholar 

  44. Yakovleva, O. V., Ziganshina, A. R., Dmitrieva, S. A., Arslanova, A. N., Yakovlev, A. V., et al. (2018) Hydrogen sulfide ameliorates developmental impairments of rat offspring with prenatal hyperhomocysteinemia, Oxid. Med. Cell. Longev., 2018, 2746873, https://doi.org/10.1155/2018/2746873.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Yakovleva, O. V., Ziganshina, A. R., Gerasimova, E. V., Arslanova, A. N., Yarmiev, I. Z., et al. (2019) Influence of group B vitamins on the early development of pup rats with prenatal hyperhomocysteinemia, Sechenov Ros. Fiziologich. Zhurn., 105, 1247-1261, https://doi.org/10.1134/S086981391910011X.

    Article  Google Scholar 

  46. Jadavji, N. M., Deng, L., Malysheva, O., Caudill, M. A., and Rozen, R. (2015) MTHFR deficiency or reduced intake of folate or choline in pregnant mice results in impaired short-term memory and increased apoptosis in the hippocampus of wild-type offspring, Neuroscience, 300, 1-9, https://doi.org/10.1016/j.neuroscience.2015.04.067.

    Article  CAS  PubMed  Google Scholar 

  47. Geoffroy, A., Saber-Cherif, L., Pourie, G., Helle, D., Umoret, R., et al. (2019) Developmental impairments in a rat model of methyl donor deficiency: effects of a late maternal supplementation with folic acid, Int. J. Mol. Sci., 20, https://doi.org/10.3390/ijms20040973.

    Article  CAS  PubMed Central  Google Scholar 

  48. Hassan, Z., Coelho, D., Kokten, T., Alberto, J. M., Umoret, R., et al. (2019) Brain susceptibility to methyl donor deficiency: from fetal programming to aging outcome in rats, Int. J. Mol. Sci., 20, https://doi.org/10.3390/ijms20225692.

    Article  CAS  PubMed Central  Google Scholar 

  49. Baydas, G., Koz, S. T., Tuzcu, M., and Nedzvetsky, V. S. (2008) Melatonin prevents gestational hyperhomocysteinemia-associated alterations in neurobehavioral developments in rats, J. Pineal Res., 44, 181-188, https://doi.org/10.1111/j.1600-079X.2007.00506.x.

    Article  CAS  PubMed  Google Scholar 

  50. Figueiro, P. W., de Moreira, D. S., Dos Santos, T. M., Prezzi, C. A., Rohden, F., et al. (2019) The neuroprotective role of melatonin in a gestational hypermethioninemia model, Int. J. Dev. Neurosci., 78, 198-209, https://doi.org/10.1016/j.ijdevneu.2019.08.004.

    Article  CAS  PubMed  Google Scholar 

  51. Schweinberger, B. M., Rodrigues, A. F., Dos Santos, T. M., Rohden, F., Barbosa, S., et al. (2018) Methionine administration in pregnant rats causes memory deficit in the offspring and alters ultrastructure in brain tissue, Neurotox. Res., 33, 239-246, https://doi.org/10.1007/s12640-017-9830-x.

    Article  CAS  PubMed  Google Scholar 

  52. Yakovleva, O., Bogatova, K., Mukhtarova, R., Yakovlev, A., Shakhmatova, V., et al. (2020) Hydrogen sulfide alleviates anxiety, motor, and cognitive dysfunctions in rats with maternal hyperhomocysteinemia via mitigation of oxidative stress, Biomolecules, 10, https://doi.org/10.3390/biom10070995.

    Article  CAS  PubMed Central  Google Scholar 

  53. Makhro, A. V., Mashkina, A. P., Solenaya, O. A., Trunova, O. A., Kozina, L. S., et al. (2008) Prenatal hyperhomocysteinemia as a model of oxidative stress of the brain, Bull. Exp. Biol. Med., 146, 33-35, https://doi.org/10.1007/s10517-008-0233-0.

    Article  CAS  PubMed  Google Scholar 

  54. Berrocal-Zaragoza, M. I., Sequeira, J. M., Murphy, M. M., Fernandez-Ballart, J. D., Abdel Baki, S. G., et al. (2014) Folate deficiency in rat pups during weaning causes learning and memory deficits, Br. J. Nutr., 112, 1323-1332, https://doi.org/10.1017/S0007114514002116.

    Article  CAS  PubMed  Google Scholar 

  55. Pourie, G., Martin, N., Daval, J. L., Alberto, J. M., Umoret, R., Gueant, J. L., and Bossenmeyer-Pourie, C. (2020) The stimulation of neurogenesis improves the cognitive status of aging rats subjected to gestational and perinatal deficiency of B9-12 vitamins, Int. J. Mol. Sci., 21, https://doi.org/10.3390/ijms21218008.

    Article  CAS  PubMed Central  Google Scholar 

  56. Pustygina, A. V., Milyutina, Y. P., Zaloznyaya, I. V., and Arutyunyan, A. V. (2015) Indices of oxidative stress in the brain of newborn rats subjected to prenatal hyperhomocysteinemia, Neurochem. J., 9, 60-65, https://doi.org/10.1134/s1819712415010079.

    Article  CAS  Google Scholar 

  57. Dennery, P. A. (2010) Oxidative stress in development: nature or nurture? Free Radic. Biol. Med., 49, 1147-1151, https://doi.org/10.1016/j.freeradbiomed.2010.07.011.

    Article  CAS  PubMed  Google Scholar 

  58. Shcherbitskaia, A., Milyutina, Y., Zalozniaia, I., Kerkeshko, G., and Arutjunyan, A. (2020) Experimental hyperhomocysteinemia initiates oxidative stress in the mother-placenta-fetus system, Eur. J. Clin. Invest., 50, 52-53.

    Google Scholar 

  59. Schweinberger, B. M., Schwieder, L., Scherer, E., Sitta, A., Vargas, C. R., and Wyse, A. T. (2014) Development of an animal model for gestational hypermethioninemia in rat and its effect on brain Na+,K+-ATPase/Mg2+-ATPase activity and oxidative status of the offspring, Metab. Brain Dis., 29, 153-60, https://doi.org/10.1007/s11011-013-9451-x.

    Article  CAS  PubMed  Google Scholar 

  60. Makhro, A. V., Mashkina, A. P., Solenaya, O. A., Tyulina, O. V., Bulygina, E. R., et al. (2008) Carnosine protects cells from oxidative stress induced by hyperhomocysteinemia, Neurochem. J., 2, 202-208, https://doi.org/10.1134/S1819712408030112.

    Article  Google Scholar 

  61. Baydas, G., Ozer, M., Yasar, A., Koz, S. T., and Tuzcu, M. (2006) Melatonin prevents oxidative stress and inhibits reactive gliosis induced by hyperhomocysteinemia in rats, Biochemistry (Moscow), 71 Suppl 1, S91-S95, https://doi.org/10.1134/s0006297906130153.

    Article  CAS  Google Scholar 

  62. Abushik, P. A., Niittykoski, M., Giniatullina, R., Shakirzyanova, A., Bart, G., et al. (2014) The role of NMDA and mGluR5 receptors in calcium mobilization and neurotoxicity of homocysteine in trigeminal and cortical neurons and glial cells, J. Neurochem., 129, 264-274, https://doi.org/10.1111/jnc.12615.

    Article  CAS  PubMed  Google Scholar 

  63. Li, W., Li, Z., Zhou, D., Zhang, X., Yan, J., and Huang, G. (2019) Maternal folic acid deficiency stimulates neural cell apoptosis via miR-34a associated with Bcl-2 in the rat foetal brain, Int. J. Dev. Neurosci., 72, 6-12, https://doi.org/10.1016/j.ijdevneu.2018.11.002.

    Article  CAS  PubMed  Google Scholar 

  64. Arutjunyan, A. V., Milyutina, Y. P., Shcherbitskaia, A. D., Kerkeshko, G. O., Zalozniaia, I. V., and Mikhel, A. V. (2020) Neurotrophins of the fetal brain and placenta in prenatal hyperhomocysteinemia, Biochemistry (Moscow), 85, 248-259, https://doi.org/10.1134/S000629792002008X.

    Article  Google Scholar 

  65. Blaise, S. A., Nedelec, E., Alberto, J. M., Schroeder, H., Audonnet, S., et al. (2009) Short hypoxia could attenuate the adverse effects of hyperhomocysteinemia on the developing rat brain by inducing neurogenesis, Exp. Neurol., 216, 231-238, https://doi.org/10.1016/j.expneurol.2008.11.020.

    Article  CAS  PubMed  Google Scholar 

  66. Shcherbitskaia, A. D., Vasilev, D. S., Milyutina, Y. P., Tumanova, N. L., Zalozniaia, I. V., et al. (2020) Maternal hyperhomocysteinemia induces neuroinflammation and neuronal death in the rat offspring cortex, Neurotox. Res., 38, 408-420, https://doi.org/10.1007/s12640-020-00233-w.

    Article  CAS  PubMed  Google Scholar 

  67. Hsiao, E. Y., and Patterson, P. H. (2012) Placental regulation of maternal-fetal interactions and brain development, Dev. Neurobiol., 72, 1317-1326, https://doi.org/10.1002/dneu.22045.

    Article  PubMed  Google Scholar 

  68. Bale, T. L., Baram, T. Z., Brown, A. S., Goldstein, J. M., Insel, T. R., et al. (2010) Early life programming and neurodevelopmental disorders, Biol. Psychiatry, 68, 314-319, https://doi.org/10.1016/j.biopsych.2010.05.028.

    Article  PubMed  PubMed Central  Google Scholar 

  69. Da Cunha, A. A., Ferreira, A. G., Loureiro, S. O., da Cunha, M. J., Schmitz, F., et al. (2012) Chronic hyperhomocysteinemia increases inflammatory markers in hippocampus and serum of rats, Neurochem. Res., 37, 1660-1669, https://doi.org/10.1007/s11064-012-0769-2.

    Article  CAS  PubMed  Google Scholar 

  70. Kim, K. C., Friso, S., and Choi, S. W. (2009) DNA methylation, an epigenetic mechanism connecting folate to healthy embryonic development and aging, J. Nutr. Biochem., 20, 917-926, https://doi.org/10.1016/j.jnutbio.2009.06.008.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Liu, H. Y., Liu, S. M., and Zhang, Y. Z. (2020) Maternal folic acid supplementation mediates offspring health via DNA methylation, Reprod. Sci., 27, 963-976, https://doi.org/10.1007/s43032-020-00161-2.

    Article  CAS  PubMed  Google Scholar 

  72. Harlan De Crescenzo, A., Panoutsopoulos, A. A., Tat, L., Schaaf, Z., Racherla, S., et al. (2020) Deficient or excess folic acid supply during pregnancy alter cortical neurodevelopment in mouse offspring, Cereb. Cortex, https://doi.org/10.1093/cercor/bhaa248.

    Article  PubMed Central  Google Scholar 

  73. Geoffroy, A., Kerek, R., Pourie, G., Helle, D., Gueant, J. L., et al. (2017) Late maternal folate supplementation rescues from methyl donor deficiency-associated brain defects by restoring Let-7 and miR-34 pathways, Mol. Neurobiol., 54, 5017-5033, https://doi.org/10.1007/s12035-016-0035-8.

    Article  CAS  PubMed  Google Scholar 

  74. Li, J. G., Barrero, C., Gupta, S., Kruger, W. D., Merali, S., and Pratico, D. (2017) Homocysteine modulates 5-lipoxygenase expression level via DNA methylation, Aging Cell, 16, 273-280, https://doi.org/10.1111/acel.12550.

    Article  CAS  PubMed  Google Scholar 

  75. Pogribny, I. P., Karpf, A. R., James, S. R., Melnyk, S., Han, T., and Tryndyak, V. P. (2008) Epigenetic alterations in the brains of Fisher 344 rats induced by long-term administration of folate/methyl-deficient diet, Brain Res., 1237, 25-34, https://doi.org/10.1016/j.brainres.2008.07.077.

    Article  CAS  PubMed  Google Scholar 

  76. Kalani, A., Kamat, P. K., Familtseva, A., Chaturvedi, P., Muradashvili, N., et al. (2014) Role of microRNA29b in blood-brain barrier dysfunction during hyperhomocysteinemia: an epigenetic mechanism, J. Cereb. Blood Flow Metab., 34, 1212-1222, https://doi.org/10.1038/jcbfm.2014.74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Kalani, A., Kamat, P. K., Givvimani, S., Brown, K., Metreveli, N., et al. (2014) Nutri-epigenetics ameliorates blood-brain barrier damage and neurodegeneration in hyperhomocysteinemia: role of folic acid, J. Mol. Neurosci., 52, 202-215, https://doi.org/10.1007/s12031-013-0122-5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Langie, S. A., Achterfeldt, S., Gorniak, J. P., Halley-Hogg, K. J., Oxley, D., et al. (2013) Maternal folate depletion and high-fat feeding from weaning affects DNA methylation and DNA repair in brain of adult offspring, FASEB J., 27, 3323-3334, https://doi.org/10.1096/fj.12-224121.

    Article  CAS  PubMed  Google Scholar 

  79. Sahay, A., Kale, A., and Joshi, S. (2020) Role of neurotrophins in pregnancy and offspring brain development, Neuropeptides, 102075, https://doi.org/10.1016/j.npep.2020.102075.

    Article  PubMed  Google Scholar 

  80. Parrish, R. R., Buckingham, S. C., Mascia, K. L., Johnson, J. J., Matyjasik, M. M., et al. (2015) Methionine increases BDNF DNA methylation and improves memory in epilepsy, Ann. Clin. Transl. Neurol., 2, 401-416, https://doi.org/10.1002/acn3.183.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Yan, Z., Jiao, F., Yan, X., and Ou, H. (2017) Maternal chronic folate supplementation ameliorates behavior disorders induced by prenatal high-fat diet through methylation alteration of BDNF and Grin2b in offspring hippocampus, Mol. Nutr. Food Res., 61, https://doi.org/10.1002/mnfr.201700461.

    Article  CAS  Google Scholar 

  82. Yang, J., Harte-Hargrove, L. C., Siao, C. J., Marinic, T., Clarke, R., et al. (2014) proBDNF negatively regulates neuronal remodeling, synaptic transmission, and synaptic plasticity in hippocampus, Cell Rep., 7, 796-806, https://doi.org/10.1016/j.celrep.2014.03.040.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Gerenu, G., Martisova, E., Ferrero, H., Carracedo, M., Rantamaki, T., et al. (2017) Modulation of BDNF cleavage by plasminogen-activator inhibitor-1 contributes to Alzheimer’s neuropathology and cognitive deficits, Biochim. Biophys. Acta Mol. Basis Dis., 1863, 991-1001, https://doi.org/10.1016/j.bbadis.2017.01.023.

    Article  CAS  PubMed  Google Scholar 

  84. Schweinberger, B. M., Rodrigues, A. F., Turcatel, E., Pierozan, P., Pettenuzzo, L. F., et al. (2018) Maternal hypermethioninemia affects neurons number, neurotrophins levels, energy metabolism, and Na+,K+-ATPase expression/content in brain of rat offspring, Mol. Neurobiol., 55, 980-988, https://doi.org/10.1007/s12035-017-0383-z.

    Article  CAS  PubMed  Google Scholar 

  85. Canever, L., Freire, T. G., Mastella, G. A., Damazio, L., Gomes, S., et al. (2018) Changes in behavioural parameters, oxidative stress and neurotrophins in the brain of adult offspring induced to an animal model of schizophrenia: the effects of FA deficient or FA supplemented diet during the neurodevelopmental phase, Prog. Neuropsychopharmacol. Biol. Psychiatry, 86, 52-64, https://doi.org/10.1016/j.pnpbp.2018.05.014.

    Article  CAS  PubMed  Google Scholar 

  86. Bahous, R. H., Jadavji, N. M., Deng, L., Cosin-Tomas, M., Lu, J., et al. (2017) High dietary folate in pregnant mice leads to pseudo-MTHFR deficiency and altered methyl metabolism, with embryonic growth delay and short-term memory impairment in offspring, Hum. Mol. Genet., 26, 888-900, https://doi.org/10.1093/hmg/ddx004.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Shcherbitskaya, A. D., Milyutina, Y. P., Vasil’ev, D. S., Nalivaeva, N. N., Zhuravin, I. A., and Arutyunyan, A. V. (2020) Specific features of metabolism of biogenic amines in the hippocampus and adrenals of rats after prenatal hyperhomocysteinemia, Zhurn. Evol. Biokhim. Fiziol., 56, 724.

    Article  Google Scholar 

  88. Kronenberg, G., Harms, C., Sobol, R. W., Cardozo-Pelaez, F., Linhart, H., et al. (2008) Folate deficiency induces neurodegeneration and brain dysfunction in mice lacking uracil DNA glycosylase, J. Neurosci., 28, 7219-7230, https://doi.org/10.1523/jneurosci.0940-08.2008.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Milyutina, Y. P., Arutyunyan, A. V., Pustygina, A. V., Shcherbitskaya, A. D., Zaloznyaya, I. V., and Zorina, I. I. (2014) Catecholamine levels in the adrenals of pup rat pups which underwent prenatal hyperhomocysteinemia, Sechenov Ross. Fiziol. Zhurn., 100, 360-369.

    CAS  Google Scholar 

  90. Arutyunyan, A. V., Zaloznyaya, I. V., Kerkeshko, G. O., Milyutina, Y. P., and Korenevskii, A. V. (2017) Prenatal hyperhomocysteinemia impairs hypothalamic regulation of reproductive cycles in rat progeny, Bull. Exp. Biol. Med., 162, 738-740, https://doi.org/10.1007/S10517-017-3701-6.

    Article  CAS  PubMed  Google Scholar 

  91. Saber Cherif, L., Pourie, G., Geoffroy, A., Julien, A., Helle, D., et al. (2019) Methyl donor deficiency during gestation and lactation in the rat affects the expression of neuropeptides and related receptors in the hypothalamus, Int. J. Mol. Sci., 20, https://doi.org/10.3390/ijms20205097.

    Article  CAS  PubMed Central  Google Scholar 

  92. Tsitsiou, E., Sibley, C. P., D’Souza, S. W., Catanescu, O., Jacobsen, D. W., and Glazier, J. D. (2011) Homocysteine is transported by the microvillous plasma membrane of human placenta, J. Inherit. Metab. Dis., 34, 57-65, https://doi.org/10.1007/s10545-010-9141-3.

    Article  CAS  PubMed  Google Scholar 

  93. Di Simone, N., Maggiano, N., Caliandro, D., Riccardi, P., Evangelista, A., et al. (2003) Homocysteine induces trophoblast cell death with apoptotic features, Biol. Reprod., 69, 1129-1134, https://doi.org/10.1095/biolreprod.103.015800.

    Article  CAS  PubMed  Google Scholar 

  94. Di Simone, N., Riccardi, P., Maggiano, N., Piacentani, A., D’Asta, M., et al. (2004) Effect of folic acid on homocysteine-induced trophoblast apoptosis, Mol. Hum. Reprod., 10, 665-669, https://doi.org/10.1093/molehr/gah091.

    Article  CAS  PubMed  Google Scholar 

  95. Kasture, V. V., Sundrani, D. P., and Joshi, S. R. (2018) Maternal one carbon metabolism through increased oxidative stress and disturbed angiogenesis can influence placental apoptosis in preeclampsia, Life Sci., 206, 61-69, https://doi.org/10.1016/j.lfs.2018.05.029.

    Article  CAS  PubMed  Google Scholar 

  96. Kim, J. M., Hong, K., Lee, J. H., Lee, S., and Chang, N. (2009) Effect of folate deficiency on placental DNA methylation in hyperhomocysteinemic rats, J. Nutr. Biochem., 20, 172-176, https://doi.org/10.1016/j.jnutbio.2008.01.010.

    Article  CAS  PubMed  Google Scholar 

  97. Li, B., Chang, S., Liu, C., Zhang, M., Zhang, L., et al. (2019) Low maternal dietary folate alters retrotranspose by methylation regulation in intrauterine growth retardation (IUGR) fetuses in a mouse model, Med. Sci. Monit., 25, 3354-3365, https://doi.org/10.12659/MSM.914292.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. McGee, M., Bainbridge, S., and Fontaine-Bisson, B. (2018) A crucial role for maternal dietary methyl donor intake in epigenetic programming and fetal growth outcomes, Nutr. Rev., 76, 469-478, https://doi.org/10.1093/nutrit/nuy006.

    Article  PubMed  Google Scholar 

  99. Park, B. H., Kim, Y. J., Park, J. S., Lee, H. Y., Ha, E. H., et al. (2005) [Folate and homocysteine levels during pregnancy affect DNA methylation in human placenta], J. Prev. Med. Public Health, 38, 437-442.

    PubMed  Google Scholar 

  100. Mahajan, A., Sapehia, D., Thakur, S., Mohanraj, P. S., Bagga, R., and Kaur, J. (2019) Effect of imbalance in folate and vitamin B12 in maternal/parental diet on global methylation and regulatory miRNAs, Sci. Rep., 9, 17602, https://doi.org/10.1038/s41598-019-54070-9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Li, Y., Gao, R., Liu, X., Chen, X., Liao, X., et al. (2015) Folate deficiency could restrain decidual angiogenesis in pregnant mice, Nutrients, 7, 6425-6445, https://doi.org/10.3390/nu7085284.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Oosterbaan, A. M., Steegers, E. A., and Ursem, N. T. (2012) The effects of homocysteine and folic acid on angiogenesis and VEGF expression during chicken vascular development, Microvasc. Res., 83, 98-104, https://doi.org/10.1016/j.mvr.2011.11.001.

    Article  CAS  PubMed  Google Scholar 

  103. Lai, W. K., and Kan, M. Y. (2015) Homocysteine-induced endothelial dysfunction, Ann. Nutr. Metab., 67, 1-12, https://doi.org/10.1159/000437098.

    Article  CAS  PubMed  Google Scholar 

  104. Chen, Y. Y., Gupta, M. B., Grattton, R., Powell, T. L., and Jansson, T. (2018) Down-regulation of placental folate transporters in intrauterine growth restriction, J. Nutr. Biochem., 59, 136-141, https://doi.org/10.1016/j.jnutbio.2018.06.003.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Hague, W. M. (2003) Homocysteine and pregnancy, Best Pract. Res. Clin. Obstet. Gynaecol., 17, 459-469.

    Article  PubMed  Google Scholar 

  106. Gaiday, A. N., Tussupkaliyev, A. B., Bermagambetova, S. K., Zhumagulova, S. S., Sarsembayeva, L. K., et al. (2018) Effect of homocysteine on pregnancy: a systematic review, Chem. Biol. Interact., 293, 70-76, https://doi.org/10.1016/j.cbi.2018.07.021.

    Article  CAS  PubMed  Google Scholar 

  107. Burton, G. J., and Jauniaux, E. (2018) Pathophysiology of placental-derived fetal growth restriction, Am. J. Obstet. Gynecol., 218, S745-S761, https://doi.org/10.1016/j.ajog.2017.11.577.

    Article  CAS  PubMed  Google Scholar 

  108. Burton, G. J., Redman, C. W., Roberts, J. M., and Moffett, A. (2019) Pre-eclampsia: pathophysiology and clinical implications, BMJ, 366, l2381, https://doi.org/10.1136/bmj.l2381.

    Article  PubMed  Google Scholar 

  109. Eldibany, M. M., and Caprini, J. A. (2007) Hyperhomocysteinemia and thrombosis: an overview, Arch. Pathol. Lab. Med., 131, 872-884, https://doi.org/10.1043/1543-2165(2007)131[872:HATAO]2.0.CO;2.

    Article  CAS  PubMed  Google Scholar 

  110. Harpel, P. C., Zhang, X., and Borth, W. (1996) Homocysteine and hemostasis: pathogenic mechanisms predisposing to thrombosis, J. Nutr., 126, 1285S-1289S, https://doi.org/10.1093/jn/126.suppl_4.1285S.

    Article  CAS  PubMed  Google Scholar 

  111. Van der Molen, E. F., Verbruggen, B., Novakova, I., Eskes, T. K., Monnens, L. A., and Blom, H. J. (2000) Hyperhomocysteinemia and other thrombotic risk factors in women with placental vasculopathy, BJOG, 107, 785-91, https://doi.org/10.1111/j.1471-0528.2000.tb13341.x.

    Article  CAS  PubMed  Google Scholar 

  112. Sahay, A. S., Sundrani, D. P., and Joshi, S. R. (2017) Neurotrophins: role in placental growth and development, Vitam. Horm., 104, 243-261, https://doi.org/10.1016/bs.vh.2016.11.002.

    Article  CAS  PubMed  Google Scholar 

  113. Fujita, K., Tatsumi, K., Kondoh, E., Chigusa, Y., Mogami, H., et al. (2011) Differential expression and the anti-apoptotic effect of human placental neurotrophins and their receptors, Placenta, 32, 737-744, https://doi.org/10.1016/j.placenta.2011.07.001.

    Article  CAS  PubMed  Google Scholar 

  114. Kawamura, K., Kawamura, N., Sato, W., Fukuda, J., Kumagai, J., and Tanaka, T. (2009) Brain-derived neurotrophic factor promotes implantation and subsequent placental development by stimulating trophoblast cell growth and survival, Endocrinology, 150, 3774-3782, https://doi.org/10.1210/en.2009-0213.

    Article  CAS  PubMed  Google Scholar 

  115. Toti, P., Ciarmela, P., Florio, P., Volpi, N., Occhini, R., and Petraglia, F. (2006) Human placenta and fetal membranes express nerve growth factor mRNA and protein, J. Endocrinol. Invest., 29, 337-341, https://doi.org/10.1007/BF03344105.

    Article  CAS  PubMed  Google Scholar 

  116. Mayeur, S., Lukaszewski, M. A., Breton, C., Storme, L., Vieau, D., and Lesage, J. (2011) Do neurotrophins regulate the feto-placental development? Med. Hypotheses, 76, 726-728, https://doi.org/10.1016/j.mehy.2011.02.008.

    Article  CAS  PubMed  Google Scholar 

  117. Akahoshi, N., Yokoyama, A., Nagata, T., Miura, A., Kamata, S., and Ishii, I. (2019) Abnormal amino acid profiles of blood and cerebrospinal fluid from cystathionine beta-synthase-deficient mice, an animal model of homocystinuria, Biol. Pharm. Bull, 42, 1054-1057, https://doi.org/10.1248/bpb.b19-00127.

    Article  CAS  PubMed  Google Scholar 

  118. Jansson, T. (2009) Novel mechanism causing restricted fetal growth: does maternal homocysteine impair placental amino acid transport? J. Physiol., 587, 4123, https://doi.org/10.1113/jphysiol.2009.178327.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Tsitsiou, E., Sibley, C. P., D’Souza, S. W., Catanescu, O., Jacobsen, D. W., and Glazier, J. D. (2009) Homocysteine transport by systems L, A and y+L across the microvillous plasma membrane of human placenta, J. Physiol., 587, 4001-4013, https://doi.org/10.1113/jphysiol.2009.173393.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Mori, M., Yamashita, Y., Hiroi, Y., Shinjo, S., Asato, R., et al. (1999) Effect of single essential amino acid excess during pregnancy on dietary nitrogen utilization and fetal growth in rats, Asia Pac. J. Clin. Nutr., 8, 251-257, https://doi.org/10.1046/j.1440-6047.1999.00094.x.

    Article  CAS  PubMed  Google Scholar 

  121. Matsueda, S., and Niiyama, Y. (1982) The effects of excess amino acids on maintenance of pregnancy and fetal growth in rats, J. Nutr. Sci. Vitaminol. (Tokyo), 28, 557-73, https://doi.org/10.3177/jnsv.28.557.

    Article  CAS  Google Scholar 

  122. Rees, W. D., Wilson, F. A., and Maloney, C. A. (2006) Sulfur amino acid metabolism in pregnancy: the impact of methionine in the maternal diet, J. Nutr., 136, 1701S-1705S, https://doi.org/10.1093/jn/136.6.1701S.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

The work was supported by the Russian Foundation for Basic Research (project no. 18-015-00099) and by the State Task (AAAA-A19-119021290116-1).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander V. Arutjunyan.

Ethics declarations

The authors declare no conflicts of interest. This article does not describe any research involving humans or animals performed by any of the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arutjunyan, A.V., Kerkeshko, G.O., Milyutina, Y.P. et al. Prenatal Stress in Maternal Hyperhomocysteinemia: Impairments in the Fetal Nervous System Development and Placental Function. Biochemistry Moscow 86, 716–728 (2021). https://doi.org/10.1134/S0006297921060092

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006297921060092

Keywords

Navigation