Skip to main content
Log in

Resonance interaction of two entangled atoms accelerating between two mirrors

  • Regular Article - Quantum Optics
  • Published:
The European Physical Journal D Aims and scope Submit manuscript

Abstract

We study the resonance interaction between two entangled identical atoms coupled to a quantized scalar field vacuum and accelerating between two mirrors. We show how radiative processes of the two-atom entangled state can be manipulated by the atomic configuration undergoing non-inertial motion. Incorporating the Heisenberg picture with symmetric operator ordering, the vacuum fluctuation and the self-reaction contributions are distinguished. We evaluate the resonance energy shift and the relaxation rate of energy of the two-atom system from the self-reaction contribution in the Heisenberg equation of motion. We investigate the variation of these two quantities with relevant parameters such as acceleration, interatomic distance and position with respect to the boundaries. We show that both the energy level shift and the relaxation rate can be controlled by tuning the above parameters.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability Statement

This manuscript has no associated data, or the data will not be deposited. [Authors’ comment: Our work is based on analytical calculations. No experimental data have been used.]

References

  1. M.O. Scully et al., PNAS 115, 8131 (2018)

    Article  Google Scholar 

  2. F. Schmidt-Kaler et al., New J. Phys. 12, 065014 (2010)

  3. S. Ritter, C. Nölleke, C. Hahn et al., Nature 484, 195 (2012)

    Article  ADS  Google Scholar 

  4. M. H. Devoret, A. Wallraff, J. M. Martinis, arXiv:cond-mat/0411174

  5. M. Baur, A. Fedorov, L. Steffen, S. Filipp, M.P. da Silva, A. Wallraff, Phys. Rev. Lett. 108, 040502 (2012)

  6. A. Abdelrahman, T. Mukai, H. Häffner, T. Byrnes, Opt. Express 22, 3501–3513 (2014)

    Article  ADS  Google Scholar 

  7. L. Liu et al., Nat. Commun. 9, 2760 (2018)

    Article  ADS  Google Scholar 

  8. S. Kolkowitz, I. Pikovski, N. Langellier, M.D. Lukin, R.L. Walsworth, J. Ye, Phys. Rev. D 94, 124043 (2016)

  9. A.A. Svidzinsky, J.S. Ben-Benjamin, S.A. Fulling, D.N. Page, Phys. Rev. Lett. 121, 071301 (2018)

  10. S. Beattie, B. Barrett, M. Weel, I. Chan, C. Mok, S.B. Cahn, A. Kumarakrishnan, Phys. Rev. A 77, 013610 (2008)

  11. J.T. Shen, S. Fan, Phys. Rev. Lett. 95, 213001 (2005)

  12. L. Guo, A. F. Kockum, F. Marquardt, G. Johansson, arXiv:1911.13028

  13. T.A. Welton, Phys. Rev. 74, 1157 (1948)

    Article  ADS  Google Scholar 

  14. G. Compagno, R. Passante, F. Persico, Phys. Lett. A 98, 253 (1983)

    Article  ADS  Google Scholar 

  15. J.R. Ackerhalt, P.L. Knight, J.H. Eberly, Phys. Rev. Lett. 30, 456 (1973)

    Article  ADS  Google Scholar 

  16. P.W. Milonni, W.A. Smith, Phys. Rev. A 11, 814 (1975)

    Article  ADS  Google Scholar 

  17. P.W. Milonni, Phys. Scr. T21, 102 (1988)

    Article  ADS  Google Scholar 

  18. W. Zhou, L. Rizzuto, R. Passante, Phys. Rev. A 97, 042503 (2018)

  19. D.P. Craig, T. Thirunamachandran, Molecular Quantum Electrodynamics (Dover, Mineola, 1998)

    Google Scholar 

  20. A. Salam, Molecular Quantum Electrodynamics (Wiley, Hoboken, 2010)

    Google Scholar 

  21. Th. Förster, In: Modern Quantum Chemistry, Edited by O (Doǧu (Academic Press, New York, Sinanoǧlu and O, 1965)

  22. G. Juzeliuas, D.L. Andrews, Adv. Chem. Phys. 112, 357 (2000)

    Google Scholar 

  23. G.S. Agarwal, S. Dutta Gupta, Phys. Rev. A 57, 667 (1998)

  24. P.R. Berman, Phys. Rev. A 91, 042127 (2015)

  25. M. Donaire, R. Guérout, A. Lambrecht, Phys. Rev. Lett. 115, 033201 (2015)

  26. P. Barcellona, R. Passante, L. Rizzuto, S.Y. Buhmann, Phys. Rev. A 94, 012705 (2016)

  27. P.W. Milonni, S.M.H. Rafsanjani, Phys. Rev. A 92, 062711 (2015)

  28. H. Haakh, F. Intravaia, C. Henkel, S. Spagnolo, R. Passante, B. Power, F. Sols, Phys. Rev. A 80, 062905 (2009)

  29. H.R. Haakh, S. Scheel, Phys. Rev. A 91, 052707 (2015)

  30. L. Rizzuto, R. Passante, F. Persico, Phys. Rev. Lett. 98, 240404 (2007)

  31. S.A. Fulling, Phys. Rev. D 7, 2850 (1973)

    Article  ADS  Google Scholar 

  32. P.C.W. Davies, J. Phys. A 8, 609 (1975)

    Article  ADS  Google Scholar 

  33. W.G. Unruh, Phys. Rev. D 14, 870 (1976)

    Article  ADS  Google Scholar 

  34. L. Rizzuto, M. Lattuca, J. Marino, A. Noto, S. Spagnolo, W. Zhou, R. Passante, Phys. Rev. A 94, 012121 (2016)

  35. W. Zhou, R. Passante, L. Rizzuto, Symmetry 10(6), 185 (2018)

    Article  Google Scholar 

  36. W. Zhou, H. Yu, Phys. Rev. D 101, 025009 (2020)

  37. A.P. Burgers, L.S. Peng, J.A. Muniz, A.C. McClung, M.J. Martin, H.J. Kimble, PNAS 116(2), 456 (2019)

    Article  ADS  Google Scholar 

  38. S. Vorrath, S.A. Möller, P. Windpassinger, K. Bongs, K. Sengstock, New J. Phys. 12, 123015 (2010)

  39. T. Yoon, M. Bajcsy, J. Phys. B 53, 135002 (2020)

  40. K. Kożdoń, I.T. Durham, A. Dragan, Quantum 2, 83 (2018)

    Article  Google Scholar 

  41. L. García-Álvarez, S. Felicetti, E. Rico et al., Sci. Rep. 7, 657 (2017)

    Article  ADS  Google Scholar 

  42. N. Friis, A.R. Lee, K. Truong, C. Sabín, E. Solano, G. Johansson, I. Fuentes, Phys. Rev. Lett. 110, 113602 (2013)

  43. P.D. Nation, J.R. Johansson, M.P. Blencowe, F. Nori, Rev. Mod. Phys. 84, 1 (2012)

    Article  ADS  Google Scholar 

  44. S. Felicetti, C. Sabín, I. Fuentes, L. Lamata, G. Romero, E. Solano, Phys. Rev. B 92, 064501 (2015)

  45. C. Sabin, EPJ Quantum Technol. 5, 5 (2018)

    Article  Google Scholar 

  46. E. Vetsch et al., Phys. Rev. Lett. 104, 203603 (2010)

  47. A. Goban et al., Phys. Rev. Lett. 109, 033603 (2012)

  48. N.V. Corzo et al., Nature 566, 359 (2019)

    Article  ADS  Google Scholar 

  49. J.D. Thompson et al., Science 340, 1202 (2013)

    Article  ADS  Google Scholar 

  50. P. Solano et al., Adv. At. Mol. Opt. Phys. 66, 439 (2017)

    Article  Google Scholar 

  51. D.E. Chang et al., Rev. Mod. Phys. 90, 031002 (2018)

  52. L.-M. Duan et al., Nature 414, 413 (2001)

    Article  ADS  Google Scholar 

  53. N. Sangouard et al., Rev. Mod. Phys. 83, 33 (2011)

    Article  ADS  Google Scholar 

  54. V. Notararigo, R. Passante, L. Rizzuto, Sci. Rep. 8, 5193 (2018)

    Article  ADS  Google Scholar 

  55. G. Fiscelli, L. Rizzuto, R. Passante, Phys. Rev. A 98, 013849 (2018)

  56. J. Dalibard, J. Dupont-Roc, C. Cohen-Tannoudji, J. Phys. (Paris) 43, 1617 (1982)

    Article  Google Scholar 

  57. J. Dalibard, J. Dupont-Roc, C. Cohen-Tannoudji, J. Phys. (Paris) 45, 637 (1984)

    Article  Google Scholar 

  58. J. Audretsch, R. Muller, Phys. Rev. A 50, 1755 (1994)

    Article  ADS  Google Scholar 

  59. J. Audretsch, R. Muller, Phys. Rev. A 52, 629 (1995)

    Article  ADS  Google Scholar 

  60. W. Jhe, Phys. Rev. A 43, 5795 (1991)

    Article  ADS  Google Scholar 

  61. W. Jhe, Phys. Rev. A 44, 5932 (1991)

    Article  ADS  Google Scholar 

  62. R. Passante, Phys. Rev, A 57, 1590 (1998)

  63. Z. Zhu, H. Yu, S. Lu, Phys. Rev. D 73, 107501 (2006)

  64. W. Zhou, H. Yu, Phys. Rev. A 86, 033841 (2012)

  65. A. Higuchi et al., Phys. Rev. D 48, 3731 (1993)

    Article  ADS  Google Scholar 

  66. R Blaga, arXiv: 1705.00890v1

  67. L. Rizzuto, S. Spagnolo, Phys. Scr. T143, 014021 (2011)

  68. N.D. Birrel, P.C.W. Davies, Quantum Field in Curved Space, (Cambridge Monographs on Mathematical Physics, Cambridge University Press, 1982)

  69. L.S. Brown, G.J. Maclay, Phys. Rev. 184, 1272 (1969)

    Article  ADS  Google Scholar 

  70. H. Cai Z. Li, Z. Ren, Eur. Phys. J. Plus 133, 458 (2018)

  71. M. Donaire, J.M. Munoz-Castaneda, L.M. Nieto, PRA 96, 042714 (2017)

  72. E.W. Hagley, F.M. Pipkin, Phys. Rev. Lett. 72, 1172 (1994)

    Article  ADS  Google Scholar 

  73. S. Datta, Quantum Transport: Atom to Transistor, (Cambridge University Press, 2005), https://doi.org/10.1017/CBO9781139164313.

Download references

Acknowledgements

ASM acknowledges support from the project DST/ICPS/QuEST/Q98 from the Department of Science and Technology, India.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Riddhi Chatterjee.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chatterjee, R., Gangopadhyay, S. & Majumdar, A.S. Resonance interaction of two entangled atoms accelerating between two mirrors. Eur. Phys. J. D 75, 179 (2021). https://doi.org/10.1140/epjd/s10053-021-00191-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjd/s10053-021-00191-8

Navigation