Skip to main content
Log in

Inelastic scattering of 14.1 MeV neutrons on iron

  • Regular Article - Experimental Physics
  • Published:
The European Physical Journal A Aims and scope Submit manuscript

Abstract

An investigation of inelastic scattering of 14.1 MeV neutrons on an iron sample was carried out using an improved TANGRA (TAgged Neutron and Gamma RAys) setup at JINR (Dubna). The yields of the occurring \(\gamma \)-transitions and anisotropy of the emitted \(\gamma \)-rays were measured using the tagged neutron method. The setup with a high-purity germanium (HPGe) detector was used to obtain the energy spectrum of \(\gamma \)-rays. The setup with 18 BGO scintillation detectors positioned in a circle around the sample was used to obtain angular distributions of \(\gamma \)-rays. A detailed \(\gamma \)-spectrum for \((n,X\gamma )\) reactions was obtained and the \(\gamma \)-ray angular distribution was measured for the 847 keV and 1238 keV \(\gamma \)-transitions. The distribution was fitted by Legendre polynomials up to fourth order and the angular distribution coefficients \(a_2\), \(a_4\) were extracted. A comparison with other published experimental results is given. Model calculations using computer code TALYS 1.9 were performed. The results of calculations are discussed in comparison with the obtained experimental data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data Availability Statement

This manuscript has no associated data or the data will not be deposited. [Authors’ comment: The datasets generated during and/or analysed during the current study are available from the corresponding author on reasonable request.]

References

  1. J. Meija et al., Pure Appl. Chem. 88, 293 (2016)

    Article  Google Scholar 

  2. NEA Nuclear Data High Priority Request List, https://www.oecd-nea.org/dbdata/hprl/

  3. The CIELP Project, https://www-nds.iaea.org/CIELO/

  4. D.E. Lea, Proc. R. Soc. Lond. A 150, 637 (1935)

    Article  ADS  Google Scholar 

  5. C.M. Castaneda et al., Nucl. Instrum. Methods B 260, 508 (2007)

    Article  ADS  Google Scholar 

  6. A. Negret et al., Phys. Rev. C 90, 034602 (2014)

    Article  ADS  Google Scholar 

  7. A. Negret et al., Phys. Rev. C 96, 024620 (2017)

    Article  ADS  Google Scholar 

  8. R. Beyer et al., Nucl. Phys. A 927, 41 (2014)

    Article  ADS  Google Scholar 

  9. R. Beyer et al., Eur. Phys. J. A 54, 58 (2018)

    Article  ADS  Google Scholar 

  10. A.P.D. Ramirez et al., Phys. Rev. C 95, 064605 (2017)

  11. S. Simakov et al., INDC(CPP)-0413 (IAEA Nuclear Data Section, Vienna, 1998)

    Google Scholar 

  12. V. Valković, 14 MeV Neutrons. Physics and Applications, 1st ed. (Taylor & Francis Group, Boca Raton, 2016)

  13. V.M. Bystritsky et al., Phys. Part. Nucl. Lett. 12, 325 (2015)

    Article  Google Scholar 

  14. I.N. Ruskov et al., Phys. Proc. 64, 163 (2015)

    Article  ADS  Google Scholar 

  15. D.N. Grozdanov et al., Phys. Atom. Nucl. 5, 588 (2018)

    Article  ADS  Google Scholar 

  16. N.A. Fedorov, D.N. Grozdanov, V.M. Bystritsky et al., Eur. Phys. J. Web of Conf. 177, 02002 (2018)

    Article  Google Scholar 

  17. N.A. Fedorov et al., Phys. Atom. Nucl. 82, 343 (2019)

    Article  ADS  Google Scholar 

  18. AFI electronics, http://afi.jinr.ru

  19. N. Zamyatin et al., Nucl. Instrum. Methods A 898, 46 (2018)

    Article  ADS  Google Scholar 

  20. F.C.L. Crespi, V. Vandone, S. Brambill et al., Nucl. Instr. and Meth. A 620, 299 (2010)

    Article  ADS  Google Scholar 

  21. D.N. Grozdanov et al., Indian J. Pure Appl. Phys. 58, 427 (2020)

    Google Scholar 

  22. D.A. Brown et al., Nucl. Data Sheets 148, 1 (2018)

    Article  ADS  Google Scholar 

  23. A.J. Koning et al., Nucl. Data Sheets 155, 1 (2019)

    Article  ADS  Google Scholar 

  24. A.J. Koning et al., Proceedings of the International Conference on Nuclear Data for Science and Technology, April 22–27, 2007, Nice, France, editors O. Bersillon, F. Gunsing, E. Bauge, R. Jacqmin, and S. Leray, EDP Sciences, p. 211–214 (2008)

  25. J. Raynal, CEA Saclay report CEA-N-2772, Notes on ECIS94 (1994)

  26. A.J. Koning et al., Nucl. Phys. A 713, 231 (2003)

    Article  ADS  Google Scholar 

  27. S. Raman, C.W. Nestor, P. Tikkanen, At. Data Nucl. Data Tables 78, 1 (2001)

    Article  ADS  Google Scholar 

  28. A.B. Smith, Nucl. Phys. A 605, 269 (1996)

    Article  ADS  Google Scholar 

  29. H. Junde, H. Su, Y. Dong, Nucl. Data Sheets 112, 1513 (2011)

    Article  ADS  Google Scholar 

  30. H. Junde, Nucl. Data Sheets 110, 2689 (2009)

    Article  ADS  Google Scholar 

  31. H. Junde, H. Su, Y. Dong, Nucl. Data Sheets 109, 787 (2008)

    Article  ADS  Google Scholar 

  32. H. Junde, H. Su, Nucl. Data Sheets 107, 1393 (2006)

    Article  ADS  Google Scholar 

  33. R.O. Nelson et al., Los Alamos Scientific Lab. Reports, No.02-7167 (LA-UR-02-7167), USA (2002)

  34. A.P. Dyagterev, Yu.E. Kozyr, G.A. Prokopec, Proceedings of the 4th All-Union Conference on Neutron Physics, Kiev, 1977, edited by L.N. Usachev, Vol. 2 (Atominform, Moscow, 1977)

  35. U. Abbondanno et al., J. Nucl. Energy 27, 227 (1973)

    Article  ADS  Google Scholar 

  36. J. Lachkar et al., Nucl. Sci. Eng. 55, 168 (1974)

    Article  Google Scholar 

  37. M. Herman et al., Nucl. Data Sheets 148, 214 (2018)

    Article  ADS  Google Scholar 

  38. M.V. Savin et al., J. Nucl. Sci. Tech. Suppl. 1, 748 (2000)

    Article  Google Scholar 

Download references

Funding

This work was partially supported by JINR AYSS grant 20-402-07. This work was partially supported by JINR AYSS grant 20-402-03.

Author information

Authors and Affiliations

Authors

Consortia

Corresponding author

Correspondence to N. A. Fedorov.

Additional information

Communicated by Navin Alahari

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fedorov, N.A., Grozdanov, D.N., Kopatch, Y.N. et al. Inelastic scattering of 14.1 MeV neutrons on iron. Eur. Phys. J. A 57, 194 (2021). https://doi.org/10.1140/epja/s10050-021-00503-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epja/s10050-021-00503-x

Navigation