Skip to main content
Log in

A Micro-Sized Rhombus-Shaped THz Antenna for High-Speed Short-Range Wireless Communication Applications

  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

In this paper, a compact micro-sized rhombus-shaped wideband THz antenna is proposed. The radiating patch has been modified by incorporating a rhombus-shaped gold metal-based element within the inscribed square-shaped slot on the surface of the patch. The proposed monopole antenna is designed on a 45-μm-thick polyimide substrate material having a dielectric constant of 4.3. The suggested compact antenna (300 \(\times\) 300 µm2) offers high radiation efficiency and wide impedance bandwidth. The designed wideband antenna shows 46.41% impedance bandwidth ranging from 0.445 to 0.714 THz. The simulation results in terms of reflection coefficient, voltage standing wave ratio, gain, directivity, radiation efficiency, radiation pattern, and surface current distribution are analyzed. The designed antenna offers \(-\) 10 dB impedance bandwidth of 269 GHz (0.445–0.714 THz), the peak radiation efficiency of 97.3%, peak gain of 5.7 dB, maximum directivity of 6 dB, and good impedance matching characteristics offering minimal VSWR of 1.1 and S11 parameter of \(-\) 26.4 dB within the operating band. The suggested THz antenna would be an exemplary choice for future high-speed short-range indoor wireless communication, video rate imaging system, sensing, homeland defense system, biomedical imaging, security scanning, detection of explosive, and material characterization in the THz regime.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

Data Availability

All the data generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Xu F, Lin Y, Huang J et al (2016) Big data driven mobile traffic understanding and forecasting: a time series approach. IEEE Trans Serv Comput 9(5):796–805

    Article  Google Scholar 

  2. Guan K, Li G, Kürner T, Molisch AF et al (2017) On millimeter wave and THz mobile radio channel for smart rail mobility. IEEE Trans Veh Technol 66(7):5658–5674

    Article  Google Scholar 

  3. Akyildiz IF, Jornet JM, Han C (2014) Terahertz band: next frontier for wireless communications. Phys Commun 12:16–32

    Article  Google Scholar 

  4. Chen Z, Ma X, Zhang B et al (2019) A survey on terahertz communications. China Commun 16(2):1–35

    Article  Google Scholar 

  5. Song H, Nagatsuma T (2011) Present and future of terahertz communications. IEEE Trans Terahertz Sci Technol 1(1):256–263

    Article  Google Scholar 

  6. Siegel PH (2002) Terahertz technology. IEEE Trans Microw Theory Tech 50(3):910–928

    Article  Google Scholar 

  7. Grade J et al (2007) Electronic terahertz antennas and probes for spectroscopic detection and diagnostics. Proc IEEE 95(8):1583–1591

    Article  CAS  Google Scholar 

  8. Chen G, Pei J, Yang F et al (2012) Terahertz-wave imaging system based on backward wave oscillator. IEEE Trans Terahertz Sci Technol 2(5):504–512

    Article  Google Scholar 

  9. Choudhury B, Bisoyi S, Reddy PV, Manjula S, Jha RM (2014) Emerging trends in terahertz metamaterial applications. Comput Mate Continua 39(3):179–215

    Google Scholar 

  10. Petrov NV, Kulya MS, Tsypkin AN, Bespalov VG, Gorodetsky A (2016) Application of terahertz pulse time-domain holography for phase imaging. IEEE Trans Terahertz Sci Technol 6(3):464–472

    Article  CAS  Google Scholar 

  11. Zhang W, Tang Y, Shi A, Bao L, Shen Y, Shen R, Ye Y (2018) Recent developments in spectroscopic techniques for the detection of explosives. Mater 11(8):1364

    Article  Google Scholar 

  12. Tabata H (2015) Application of terahertz wave technology in the biomedical field. IEEE Trans Terahertz Sci Technol 5(6):1146–1153

    CAS  Google Scholar 

  13. Kleine-Ostmann T, Nagatsuma T (2011) A review on terahertz communications research. J Infrared Millim Terahertz Waves 32(2):143–171

    Article  Google Scholar 

  14. Federici J, Moeller L (2010) Review of terahertz and subterahertz wireless communications. J Appl Phys 107:111101

  15. He Y, Chen Y, Zhang L, Wong SW, Chen ZN (2020) An overview of terahertz antennas. China Commun 17(7):124–165

    Article  Google Scholar 

  16. Saurabh L, Bhatnagar A, Kumar S (2017) Design and performance analysis of bow-tie photoconductive antenna for THz application. In 2017 International Conference on Intelligent Computing and Control (I2C2), pp 1–3

  17. Gearhart SS, Ling CC, Rebeiz GM, Davee H, Chin G (1991) Integrated 119-μm linear corner-cube array. IEEE Microw Guided Wave Lett 1(7):155–157

    Article  Google Scholar 

  18. Markish O, Leviatan Y (2016) Analysis and optimization of terahertz bolometer antennas. IEEE Trans Antennas Propag 64(8):3302–3309

    Article  Google Scholar 

  19. Garcia RG, Ederra I, Iriarte JC, Teniente J (2016) Space antennas including terahertz antennas. In: Chen Z, Liu D, Nakano H, Qing X, Zwick T (eds) Handbook of antenna technologies. Springer, Singapore. https://doi.org/10.1007/978-981-4560-44-3_123

  20. Choudhury B, Danana B, Jha RM (2016) PBG based terahertz antenna for aerospace applications. In: PBG based terahertz antenna for aerospace applications. SpringerBriefs in Electrical and Computer Engineering. Springer, Singapore. https://doi.org/10.1007/978-981-287-802-1_1

  21. Devapriya AT, Robinson S (2019) Investigation on metamaterial antenna for terahertz applications. J Microw Optoelectron Electromagn Appl 18(3):377–389

    Article  Google Scholar 

  22. Varshney AK, Pathak NP, Sircar D (2019) Design of graphene-based THz antennas. In: Iyer B, Nalbalwar S, Pathak N (eds) Computing communication and signal processing. Adv Intell Syst Comput, vol 810. Springer, Singapore. https://doi.org/10.1007/978-981-13-1513-8_4

  23. Gao M, Li K, Kong F et al (2020) Graphene-based composite right/left-handed leaky-wave antenna at terahertz. Plasmonics 15:1199–1204. https://doi.org/10.1007/s11468-020-01130-w

    Article  CAS  Google Scholar 

  24. Abadal S, Hosseininejad SE, Aparicio AC, Alarc ́on E, (2017) Graphene-based terahertz antennas for area-constrained applications. IEEE International Conference on Telecommunications and Signal Processing At Barcelona. https://doi.org/10.1109/TSP.2017.8076102

    Article  Google Scholar 

  25. Younssi M, Jaoujal A, Yaccoub MHD, El Moussaoui A, Aknin N (2012) Study of a microstrip antenna with and without superstrate for terahertz frequency. Int J Innov Appl Stud 3:369–371

    Google Scholar 

  26. Nejati A, Sadeghzadeh RA, Geran F (2014) Effect of photonic crystal and frequency selective surface implementation on gain enhancement in the microstrip patch antenna at terahertz frequency. Physica B Condens Matter 449:113–120

    Article  CAS  Google Scholar 

  27. Kushwaha RK, Karuppanan P, Malviya LD (2018) Design and analysis of novel microstrip patch antenna on photonic crystal in THz. Physica B Condens Matter 545:107–112

    Article  CAS  Google Scholar 

  28. Hocini A, Temmar MN, Khedrouche D, Zamani M (2019) Novel approach for the design and analysis of a terahertz microstrip patch antenna based on photonic crystals. Photonics Nanostruct Fundam Appl 36:100723

  29. Sharma A, Singh G (2009) Rectangular microstrip patch antenna design at THz frequency for short distance wireless communication systems. J Infrared Millim Terahz Waves 30:1–7. https://doi.org/10.1007/s10762-008-9416-z

    Article  CAS  Google Scholar 

  30. Mahmud RH (2020) Terahertz microstrip patch antennas for the surveillance applications. Kurd J Appl Res 5:17–27. https://doi.org/10.24017/science.2020.1.2

    Article  Google Scholar 

  31. Ananda S, Sriram Kumara D, Wub RJ, Chavali M (2014) Graphene nanoribbon based terahertz antenna on polyimide substrate. Optik 125(19):5546–5549

    Article  Google Scholar 

  32. Rabbani MS, Ghafouri-Shiraz H (2015) Improvement of microstrip antenna’s bandwidth and fabrication tolerance at terahertz frequency bands.

  33. Wang L, Uppuluri SM, Jin EX, Xu X (2006) Nanolithography using high transmission nanoscale bowtie apertures. Nano Lett 6(3):361–364

    Article  CAS  Google Scholar 

  34. Jamshed MA, Nauman A, Abbasi MAB, Kim SW (2020) Antenna selection and designing for THz applications: suitability and performance evaluation: a survey. IEEE Access 8:113246–113261

    Article  Google Scholar 

  35. Huang H, Xia H, Guo Z, Xie D, Li H (2018) Dynamically tunable dendritic graphene based absorber with thermal stability at infrared regions. Appl Phys A 124(6):429. https://doi.org/10.1007/s00339-018-1844-6

    Article  CAS  Google Scholar 

  36. Patel SK, Sorathiya V, Sbeah Z, Lavadiya S, Nguyen TK, Dhasarathan V (2020) Graphene-based tunable infrared multi band absorber. Opt Commun 474:126109

  37. Patel SK, Sorathiya V, Lavadiya S, Thomas L, Nguyen TK, Dhasarathan V (2020) Multi-layered graphene silica-based tunable absorber for infrared wavelength based on circuit theory approach. Plasmonics 15:1767–1779. https://doi.org/10.1007/s11468-020-01191-x

    Article  CAS  Google Scholar 

  38. Balanis CA (2015) Antenna theory analysis and design, 3rd edn. John Wiley & Sons

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

All the authors contributed to the study, conception, design, and simulations. Data collection, analysis, and simulation were performed by Ch Murali Krishna, Sudipta Das, and Anvesh Kumar Nella. Additional input to analysis and simulation was given by Soufian Lakrit and Boddapati Taraka Phani Madhav. All the authors contributed to complete the writing and presentation of the whole manuscript.

Corresponding author

Correspondence to Sudipta Das.

Ethics declarations

Consent to Participate

Informed consent was obtained from all authors.

Consent for Publication

The authors confirm that there is informed consent to the publication of the data contained in the article.

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Krishna, C.M., Das, S., Nella, A. et al. A Micro-Sized Rhombus-Shaped THz Antenna for High-Speed Short-Range Wireless Communication Applications. Plasmonics 16, 2167–2177 (2021). https://doi.org/10.1007/s11468-021-01472-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-021-01472-z

Keywords

Navigation