Skip to main content
Log in

Rigorous convergence proof of space-time multigrid with coarsening in space

  • Original Paper
  • Published:
Numerical Algorithms Aims and scope Submit manuscript

Abstract

Space-time multigrid refers to the use of multigrid methods to solve discretized partial differential equations considering at once multiple time steps. A new theoretical analysis is developed for the case where one uses coarsening in space only. It proves bounds on the 2-norm of the iteration matrix that connect it to the norm of the iteration matrix when using the same multigrid method to solve the corresponding stationary problem. When using properly defined wavefront type smoothers, the bound is uniform with respect to the mesh size, the time step size, and the number of time steps, and addresses both the two-grid case and the W-cycle. On the other hand, for time-parallel smoothers, the results clearly show the condition to be satisfied by the time step size to have similar performance as with wavefront type smoothers. The analysis also leads to the definition of an effective smoothing factor that allows one to quickly check the potentialities of a given smoothing scheme. The accuracy of the theoretical estimates is illustrated on a numerical example, highlighting the relevance of the effective smoothing factor and the usefulness in following the provided guidelines to have robustness with respect to the time step size.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Adams, M., Brezina, M., Hu, J., Tuminaro, R.: Parallel multigrid smoothing: polynomial versus Gauss–Seidel. J. Comput. Physics 188, 593–610 (2003)

    Article  MathSciNet  Google Scholar 

  2. Baker, A. H., Falgout, R. D., Kolev, T. V., Yang, U. M.: Multigrid smoothers for ultraparallel computing. SIAM J. Sci. Comput. 33, 2864–2887 (2011)

    Article  MathSciNet  Google Scholar 

  3. Dobrev, V. A., Kolev, T., Petersson, N. A., Schroder, J. B.: Two-level convergence theory for multigrid reduction in time (MGRIT). SIAM J. Sci. Comput. 39, S501–S527 (2017)

    Article  MathSciNet  Google Scholar 

  4. Falgout, R. D., Friedhoff, S., Kolev, T. V., MacLachlan, S. P., Schroder, J. B.: Parallel time integration with multigrid. SIAM J. Sci. Comput. 36, C635–C661 (2014)

    Article  MathSciNet  Google Scholar 

  5. Falgout, R. D., Friedhoff, S., Kolev, T. V., MacLachlan, S. P., Schroder, J. B., Vandewalle, S.: Multigrid methods with space–time concurrency. Comput. Vis. Sci. 18, 123–143 (2017)

    Article  MathSciNet  Google Scholar 

  6. Franco, S. R., Gaspar, F. J., Villela Pinto, M. A., Rodrigo, C.: Multigrid method based on a space-time approach with standard coarsening for parabolic problems. Appl. Math. Comput. 317, 25–34 (2018)

    MathSciNet  MATH  Google Scholar 

  7. Friedhoff, S., MacLachlan, S.: A generalized predictive analysis tool for multigrid methods. Numer. Linear Algebra Appl. 22, 618–647 (2015)

    Article  MathSciNet  Google Scholar 

  8. Friedhoff, S., MacLachlan, S., Börgers, C.: Local fourier analysis of space-time relaxation and multigrid schemes. SIAM J. Sci. Comput. 35, S250–S276 (2013)

    Article  MathSciNet  Google Scholar 

  9. Gander, M. J., Neumüller, M.: Analysis of a new space-time parallel multigrid algorithm for parabolic problems, SIAM. J. Sci. Comput. 38, A2173–A2208 (2016)

    MATH  Google Scholar 

  10. Hackbusch, W.: Parabolic multi-grid methods. In: Proceedings of the Sixth Int’l. Symposium on Computing Methods in Applied Sciences and Engineering, VI, NLD, pp 189–197. North-Holland (1985)

  11. Horton, G.: The time-parallel multigrid method. Comm. Appl. Num. Methods 8, 585–595 (1992)

    Article  MathSciNet  Google Scholar 

  12. Horton, G., Vandewalle, S.: A space-time multigrid method for parabolic partial differential equations. SIAM J. Sci. Comput. 16, 848–864 (1995)

    Article  MathSciNet  Google Scholar 

  13. Janssen, J., Vandewalle, S.: Multigrid waveform relaxation on spatial finite element meshes: the discrete-time case. SIAM J. Sci. Comput. 17, 133–155 (1996)

    Article  MathSciNet  Google Scholar 

  14. Kaveh, A., Rahami, H.: Block circulant matrices and applications in free vibration analysis of cyclically repetitive structures. Acta Mech 217, 51–62 (2011)

    Article  Google Scholar 

  15. Lubich, C., Ostermann, A.: Multi-grid dynamic iteration for parabolic equations. BIT 27, 216–234 (1987)

    Article  MathSciNet  Google Scholar 

  16. Southworth, B. S.: Necessary conditions and tight two-level convergence bounds for parareal and multigrid reduction in time. SIAM J. Matrix Anal. Appl. 40, 564–608 (2019)

    Article  MathSciNet  Google Scholar 

  17. Stüben, K., Trottenberg, K.U.: Multigrid methods: Fundamental algorithms, model problem analysis and applications. In: Hackbusch, W., Trottenberg, U. (eds.) Lectures Notes in Mathematics No. 960, Berlin Heidelberg New York, pp 1–176. Springer (1982)

  18. Trottenberg, U., Oosterlee, C. W., Schüller, A.: Multigrid. Academic Press, London (2001)

    MATH  Google Scholar 

  19. Vandewalle, S., Horton, G.: Fourier mode analysis of the multigrid waveform relaxation and time-parallel multigrid methods. Computing 54, 317–330 (1995)

    Article  MathSciNet  Google Scholar 

  20. Vandewalle, S., Van de Velde, E.: Space-time concurrent multigrid waveform relaxation. Ann. Numer. Math. 1, 347–360 (1994)

Download references

Acknowledgements

We thank an anonymous referee for careful reading and useful suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yvan Notay.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Yvan Notay is Research Director of the Fonds de la Recherche Scientifique – FNRS.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Notay, Y. Rigorous convergence proof of space-time multigrid with coarsening in space. Numer Algor 89, 675–699 (2022). https://doi.org/10.1007/s11075-021-01129-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11075-021-01129-2

Keywords

Mathematics Subject Classification (2010)

Navigation