Skip to main content
Log in

A cost-efficient auto-scaling mechanism for IoT applications in fog computing environment: a deep learning-based approach

  • Published:
Cluster Computing Aims and scope Submit manuscript

Abstract

The fog computing model has emerged as a viable infrastructure for serving IoT applications in recent years. In the fog ecosystem, it is essential to manage resources for different workloads due to the high volume and rapid growth of requests. Therefore, a challenge faced in this area is dynamic and efficient resource auto-scaling because fog resources must be allocated to requests efficiently. More fog resources than needed leads to “Over-Provisioning”, and fewer fog resources leads to the “Under-provisioning” issue. To this end, an effective deep learning-based resource auto-scaling mechanism has been proposed to manage the number of resources needed to handle dynamic workloads in a fog environment. The simulation results indicated that the proposed solution reduces cost, network usage, and delay violation and increases CPU utilization compared with existing resource auto-scaling mechanisms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Fersi, G.: Fog computing and Internet of Things in one building block: a survey and an overview of interacting technologies. Clust. Comput. (2021). https://doi.org/10.1007/s10586-021-03286-4

    Article  Google Scholar 

  2. Puri, V., Priyadarshini, I., Kumar, R., Van Le, C.: Smart contract based policies for the Internet of Things. Clust. Comput. (2021). https://doi.org/10.1007/s10586-020-03216-w

    Article  Google Scholar 

  3. Atlam, H.F., Walters, R.J., Wills, G.B.: Fog computing and the Internet of Things: a review. Big Data Cogn. Comput. 2(2), 10 (2018)

    Article  Google Scholar 

  4. Liu, Y., Zhang, J., Zhan, J.: Privacy protection for fog computing and the Internet of Things data based on blockchain. Clust. Comput. 24, 1–15 (2020)

    Google Scholar 

  5. Shahidinejad, A., Ghobaei-Arani, M., Masdari, M.: Resource provisioning using workload clustering in cloud computing environment: a hybrid approach. Clust. Comput. 24(1), 319–342 (2021)

    Article  Google Scholar 

  6. Puliafito, C., Mingozzi, E., Longo, F., Puliafito, A., Rana, O.: Fog computing for the Internet of Things: a survey. ACM Trans. Internet Technol. 19(2), 1–41 (2019)

    Article  Google Scholar 

  7. Jyoti, A., Shrimali, M.: Dynamic provisioning of resources based on load balancing and service broker policy in cloud computing. Clust. Comput. 23(1), 377–395 (2020)

    Article  Google Scholar 

  8. Mahmud, R., Kotagiri, R., Buyya, R.: Fog computing: a taxonomy, survey and future directions. In: Internet of Everything, pp. 103–130. Springer, Singapore (2018)

  9. Aslanpour, M.S., Gill, S.S., Toosi, A.N.: Performance evaluation metrics for cloud, fog and edge computing: a review, taxonomy, benchmarks and standards for future research. Internet Things 12, 100273 (2020)

    Article  Google Scholar 

  10. Ayoubi, M., Ramezanpour, M., Khorsand, R.: An autonomous IoT service placement methodology in fog computing. Software: Practice and Experience, 51(5), 1097-1120, (2021)

  11. Manasrah, A.M., Gupta, B.B.: An optimized service broker routing policy based on differential evolution algorithm in fog/cloud environment. Clust. Comput. 22(1), 1639–1653 (2019)

    Article  Google Scholar 

  12. Ghobaei-Arani, M., Souri, A., Rahmanian, A.A.: Resource management approaches in fog computing: a comprehensive review. J. Grid Comput. 18, 1–42 (2019)

    Article  Google Scholar 

  13. Pournaras, E., Yadhunathan, S., Diaconescu, A.: Holarchic structures for decentralized deep learning: a performance analysis. Clust. Comput. 23(1), 19–240 (2020)

    Article  Google Scholar 

  14. Elshawi, R., Wahab, A., Barnawi, A., Sakr, S.: DLBench: a comprehensive experimental evaluation of deep learning frameworks. Clust. Comput. (2021). https://doi.org/10.1007/s10586-021-03240-4

    Article  Google Scholar 

  15. Cheon, H., Ryu, J., Ryou, J., Park, C.Y., Han, Y.S.: ARED: automata-based runtime estimation for distributed systems using deep learning. Clust. Comput. (2021). https://doi.org/10.1007/s10586-021-03272-w

    Article  Google Scholar 

  16. Gupta, B.B., Agrawal, D.P., Yamaguchi, S.: Deep learning models for human centered computing in fog and mobile edge networks. J. Ambient Intell. Humaniz. Comput. 10, 2907–2911 (2019)

    Article  Google Scholar 

  17. Naha, R.K., Garg, S., Chan, A., Battula, S.K.: Deadline-based dynamic resource allocation and provisioning algorithms in fog–cloud environment. Future Gener. Comput. Syst. 104, 131–141 (2020)

    Article  Google Scholar 

  18. Baghban, H., Huang, C.Y., Hsu, C.H.: Resource provisioning towards OPEX optimization in horizontal edge federation. Comput. Commun. 158, 39–50 (2020)

    Article  Google Scholar 

  19. Madan, N., Malik, A.W., Rahman, A.U., Ravana, S.D.: On-demand resource provisioning for vehicular networks using flying fog. Veh. Commun. 25, 100252 (2020)

    Google Scholar 

  20. Santos, J., Wauters, T., Volckaert, B., De Turck, F.: Towards end-to-end resource provisioning in Fog Computing over Low Power Wide Area Networks. J. Netw. Comput. Appl. 175, 102915 (2021)

    Article  Google Scholar 

  21. Lu, S., Wu, J., Duan, Y., Wang, N., Fang, J.: Towards cost-efficient resource provisioning with multiple mobile users in fog computing. J. Parallel Distrib. Comput. 146, 96–106 (2020)

    Article  Google Scholar 

  22. Nguyen, N.D., Phan, L.A., Park, D.H., Kim, S., Kim, T.: ElasticFog: elastic resource provisioning in container-based fog computing. IEEE Access 8, 183879–183890 (2020)

    Article  Google Scholar 

  23. Porkodi, V., Singh, A.R., Sait, A.R.W., Shankar, K., Yang, E., Seo, C., Joshi, G.P.: Resource provisioning for cyber–physical–social system in cloud–fog–edge computing using optimal flower pollination algorithm. IEEE Access 8, 105311–105319 (2020)

    Article  Google Scholar 

  24. Naha, R.K., Garg, S., Battula, S.K., Amin, M.B., Georgakopoulos, D.: Multiple Linear Regression-Based Energy-Aware Resource Allocation in the Fog Computing Environment. arXiv preprint (2021). arXiv:2103.06385

  25. Xu, Z., Zhang, Y., Li, H., Yang, W., Qi, Q.: Dynamic resource provisioning for cyber–physical systems in cloud–fog–edge computing. J Cloud Comput. 9(1), 1–16 (2020)

    Article  Google Scholar 

  26. Mahmud, R., Toosi, A.N.: Con-Pi: A Distributed Container-Based Edge and Fog Computing Framework for Raspberry Pis. arXiv preprint (2021). arXiv:2101.03533

  27. Etemadi, M., Ghobaei-Arani, M., Shahidinejad, A.: Resource provisioning for IoT services in the fog computing environment: an autonomic approach. Comput. Commun. 161, 109–131 (2020)

    Article  Google Scholar 

  28. Tseng, F.-H., Tsai, M.-S., Tseng, C.-W., Yang, Y.-T., Liu, C.-C., Chou, L.-D.: A lightweight auto-scaling mechanism for fog computing in industrial applications. IEEE Trans. Ind. Inform. 14(10), 1–8 (2018)

    Article  Google Scholar 

  29. El Kafhali, S., Salah, K.: Efficient and dynamic scaling of fog nodes for IoT devices. J. Supercomput. 73, 5261–5284 (2017)

    Article  Google Scholar 

  30. Peng, L., Dhaini, A.R., Ho, P.H.: Toward integrated Cloud-Fog networks for efficient IoT provisioning: key challenges and solutions. Future Gener. Comput. Syst. 88, 606–613 (2018)

    Article  Google Scholar 

  31. Etemadi, M., Ghobaei-Arani, M., Shahidinejad, A.: A learning-based resource provisioning approach in the fog computing environment. J. Exp. Theor. Artif. Intell. (2020). https://doi.org/10.1080/0952813X.2020.1818294

    Article  Google Scholar 

  32. Rabie, A.H., Ali, S.H., Ali, H.A., Saleh, A.I.: A fog based load forecasting strategy for smart grids using big electrical data. Clust. Comput. 22(1), 241–270 (2019)

    Article  Google Scholar 

  33. Radhakrishnan, G., Srinivasan, K., Maheswaran, S., Mohanasundaram, K., Palanikkumar, D., Vidyarthi, A.: A deep-RNN and meta-heuristic feature selection approach for IoT malware detection. Mater. Today Proc. (2021). https://doi.org/10.1016/j.matpr.2021.01.207

    Article  Google Scholar 

  34. Millham, R., Agbehadji, I.E., Yang, H.: Parameter tuning onto recurrent neural network and long short-term memory (RNN-LSTM) network for feature selection in classification of high-dimensional bioinformatics datasets. In: Bio-inspired Algorithms for Data Streaming and Visualization, Big Data Management, and Fog Computing, pp. 21-42. Springer, Singapore (2021)

  35. Alaei, M., Khorsand, R., Ramezanpour, M.: An adaptive fault detector strategy for scientific workflow scheduling based on improved differential evolution algorithm in cloud. Applied Soft Computing, 99, 106895, (2021)

  36. Gupta, H., Vahid Dastjerdi, A., Ghosh, S.K., Buyya, R.: iFogSim: a toolkit for modeling and simulation of resource management techniques in the Internet of Things, Edge and Fog computing environments. Softw. Pract. Exp. 47(9), 1275–1296 (2017)

    Article  Google Scholar 

  37. http://iot.ee.surrey.ac.uk:8080/datasets.html 2014

  38. Saeedi, S., Khorsand, R., Bidgoli, S. G., & Ramezanpour, M.: Improved many-objective particle swarm optimization algorithm for scientific workflow scheduling in cloud computing. Computers & Industrial Engineering, 147, 106649, (2020)

  39. Paknejad, P., Khorsand, R., Ramezanpour, M.: Chaotic improved PICEA-g-based multi-objective optimization for workflow scheduling in cloud environment. Future Generation Computer Systems, 117, 12-28, (2021)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mostafa Ghobaei-Arani.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Etemadi, M., Ghobaei-Arani, M. & Shahidinejad, A. A cost-efficient auto-scaling mechanism for IoT applications in fog computing environment: a deep learning-based approach. Cluster Comput 24, 3277–3292 (2021). https://doi.org/10.1007/s10586-021-03307-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10586-021-03307-2

Keywords

Navigation