Skip to main content
Log in

Optimal Estimator Design for LTI Systems with Bounded Noises, Disturbances, and Nonlinearities

  • Published:
Circuits, Systems, and Signal Processing Aims and scope Submit manuscript

Abstract

This paper presents a new estimation technique for linear time-invariant (LTI) systems with bounded additional nonlinearities and/or disturbances, measurement noises, and initial states. A new direct methodology is developed to design an estimator optimizing the maximum estimation error of the system state or its linear function in a prefixed time interval. For some mechanical systems, both the parameters of the optimal estimator and the related maximum estimation error in a closed form are provided. The proposed method is illustrated through four simulation and experimental examples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability statement

The computation data are available upon request.

References

  1. B.D.O. Anderson, J.B. Moore, Optimal Filtering (Prentice Hall, Englewood Cliffs, NJ, 1979)

    MATH  Google Scholar 

  2. T. Basar, Optimum performance levels for minimax filters, predictors and smoothers. Syst. Control Lett. 16, 309–317 (1991)

    Article  MathSciNet  Google Scholar 

  3. M.V. Basin, New Trends in Optimal Filtering and Control for Polynomial and Time-Delay Systems, Lecture Notes in Control and Information Sciences, Springer, Berlin Heidelberg, 2008

  4. M.V. Basin, P. Shi, New trends in optimal and robust filtering for stochastic systems. Circuits Syst. Signal Process 28, 185–189 (2009)

    Article  Google Scholar 

  5. A. Capozzoli, L. Celentano, C. Curcio, A. Liseno, S. Savarese, Optimized trajectory tracking of a class of uncertain systems applied to optimized raster scanning in near-field measurements. IEEE Access 6, 8666–8681 (2018)

    Article  Google Scholar 

  6. L. Celentano, Design of a pseudo-PD or PI robust controller to track C2 trajectories for a class of uncertain nonlinear MIMO System. J. Franklin Instit. 354(12), 5026–5055 (2017)

    Article  MathSciNet  Google Scholar 

  7. L. Celentano, Pseudo-PID robust tracking design method for a significant class of uncertain MIMO systems. IFAC-Papers Line 50(1), 1545–1552 (2017)

    Article  Google Scholar 

  8. L. Celentano, M. Basin, New results on robust stability analysis and synthesis for MIMO uncertain systems. IET Control Theory Appl. 12(10), 1421–1430 (2018)

    Article  MathSciNet  Google Scholar 

  9. L. Celentano, R. Iervolino, Trajectory tracking of a class of uncertain systems applied to vehicle platooning and antenna scanning systems. Int. J. Syst. Sci. 49(15), 3231–3246 (2018)

    Article  MathSciNet  Google Scholar 

  10. L. Celentano, M. Basin, “Comprehensive approach to design robust tracking controllers for mechatronic processes,” IEEE SMC 2019 International Conference on Systems, Man, and Cybernetics, October 6-9, Bari, Italy, 2019

  11. L. Celentano, M. Basin, An approach to design robust tracking controllers for nonlinear uncertain systems. IEEE Trans. Syst. Man Cybern. Syst. 50(8), 3010–3023 (2020)

    Article  Google Scholar 

  12. B. Chen, L. Yu, W.-A. Zhang, H∞ filtering for markovian switching genetic regulatory networks with time-delays and stochastic disturbances. Circuits Syst. Signal Process 30, 1231–1252 (2011)

    Article  MathSciNet  Google Scholar 

  13. W.-H. Chen, Disturbance observer-based control for nonlinear systems. IEEE/ASME Trans. Mechatr. 9(4), 706–710 (2004)

    Article  Google Scholar 

  14. M.C. De Oliveira, J.C. Geromel, H2 and H∞ filtering design subject to implementation uncertainty. Siam J. Control Optim. 44(2), 515–530 (2005)

    Article  MathSciNet  Google Scholar 

  15. H. Dong, Z. Wang, S.X. Ding, H. Gao, On H∞ estimation of randomly occurring faults for a class of nonlinear time-varying systems with fading channels. IEEE Trans. Autom. Control 61(2), 479–484 (2016)

    Article  MathSciNet  Google Scholar 

  16. M. Farza, M. M’Saad, M.L. Fall, E. Pigeon, O. Gehan, K. Busawon, Continuous-discrete time observers for a class of MIMO nonlinear systems. IEEE Trans. Autom. Contr. 59(4), 1060–1065 (2014)

    Article  MathSciNet  Google Scholar 

  17. E. Fridman, U. Shaked, “A descriptor system approach to H∞ control of linear time-delay systems. IEEE Trans. Automat. Contr. 47, 253–270 (2002)

    Article  MathSciNet  Google Scholar 

  18. E. Fridman, U. Shaked, and L. Xie, “Robust H2 filtering of linear systems with time delays,” in Proc. 41st IEEE Conference on Decision and Control, Las Vegas, Nevada USA, pp. 3877-3882, 2002

  19. J.C. Geromel, Optimal linear filtering under parameter uncertainty. IEEE Trans. Signal Processing 47, 168–175 (1999)

    Article  Google Scholar 

  20. J.C. Geromel, J. Bernussou, G. Garcia, M.C. de Oliveira, H2 and H robust filtering for discrete-time linear systems. SIAM J. Control Optim. 38, 1353–1368 (2000)

    Article  MathSciNet  Google Scholar 

  21. M. Gevers, G. Li, Parametrizations in Control, Estimation and Filtering Problems (Springer, London, 1993)

    Book  Google Scholar 

  22. W. Gong, H. Li, D. Zhao, An improved denoising model based on the analysis K-SVD algorithm. Circuits Syst. Signal Process 36, 4006–4021 (2017)

    Article  Google Scholar 

  23. F. Han, H. Dong, N. Hou, and X. Bu, “Tobit Kalman filtering: conditional expectation approach,” 2017 Chinese Automation Congress, Jinan, China, pp. 928–932, 2017

  24. B. Hassibi, A.H. Sayed, T. Kailath, H∞ optimality of the LMS algorithm. IEEE Trans. Signal Process. 44(2), 267–280 (1996)

    Article  Google Scholar 

  25. B. Hassibi, A.H. Sayed, T. Kailath, Linear estimation in Krein spaces. Part I: theory. IEEE Trans. Autom. Control 41(1), 18–33 (1996)

    Article  Google Scholar 

  26. R. Horst, H. Tuy, Global Optimization: Deterministic Approaches, 3rd edn. (Springer, Berlin, 2003)

    MATH  Google Scholar 

  27. C.-S. Hsieh, F.-C. Chen, General two-stage Kalman filters. IEEE Trans. Autom. Control 45(4), 819–824 (2000)

    Article  MathSciNet  Google Scholar 

  28. R.E. Kalman, “On the general theory of control systems,” in Proc. of the First IFAC World Congress, Butterworth Scientific Publications, 1960

  29. D. Luenberger, Observing the state of a linear system. IEEE Trans. Military Electronics MIL-8, 74–80 (1964)

  30. F. Mazenc, O. Bernard, Interval observers for linear time-invariant systems with disturbances. Automatica 47(1), 140–147 (2011)

    Article  MathSciNet  Google Scholar 

  31. M. Milanese, F. Ruiz, M. Taragna, Direct data-driven filter design for uncertain LTI systems with bounded noise. Automatica 46, 1773–1784 (2010)

    Article  MathSciNet  Google Scholar 

  32. M. Mintz, A Kalman filter as minimax estimator. J. Opt. Theory Appl. 9, 99–111 (1972)

    Article  MathSciNet  Google Scholar 

  33. F.O. Ruiz Palacios, “New approaches to optimal filter design,” Ph.D. dissertation, Course in Information and Systems Engineering, Polytechnic University of Turin, Turin, Italy, 2009

  34. P. Shi, M. Karan, C.Y. Kaya, Robust Kalman filter design for markovian jump linear systems with norm-bounded unknown nonlinearities. Circuits Syst. Signal Process 24(2), 135–150 (2005)

    Article  MathSciNet  Google Scholar 

  35. Y. Su, P.C. Müller, C. Zheng, A simple nonlinear observer for a class of uncertain mechanical systems. IEEE Trans. Autom. Control 52(7), 1340–1345 (2007)

    Article  MathSciNet  Google Scholar 

  36. S. Sundaram, C.N. Hadjicosti, Delayed observers for linear systems with unknown inputs. IEEE Trans. Autom. Control 52(2), 334–339 (2007)

    Article  MathSciNet  Google Scholar 

  37. S.P. Talebi, S. Werner, Distributed Kalman filtering in presence of unknown outer network actuations. IEEE Control Syst. Lett. 3(1), 186–191 (2019)

    Article  MathSciNet  Google Scholar 

  38. Z. Wang, W. Zhou, Robust linear filter with parameter estimation under student-t measurement distribution. Circuits Syst Signal Process 38, 2445–2470 (2019)

    Article  Google Scholar 

  39. Z. Wang, Y. Shen, X. Zhang, Observer design for discrete-time descriptor systems: an LMI approach. Syst. Control Lett. 61(6), 683–687 (2012)

    Article  MathSciNet  Google Scholar 

  40. I. Yaesh and U. Shaked, “Game theory approach to optimal linear estimation in the minimum H∞-norm sense,” in Proc. 28th Conference on Decision and Control, Tampa, Florida, pp. 421–425, 1989

  41. R. Yang, P. Shi, G.-P. Liu, Filtering for discrete-time networked nonlinear systems with mixed random delays and packet dropouts. IEEE Trans. Autom. Control 56(11), 2655–2660 (2011)

    Article  MathSciNet  Google Scholar 

  42. R. Yang, W.X. Zheng, H∞ filtering for discrete-time 2-D switched systems: an extended average dwell time approach. Automatica 98, 302–313 (2018)

    Article  MathSciNet  Google Scholar 

  43. Q. Zhou, B. Chen, H. Li, C. Lin, Delay-range-dependent L2–L∞ filtering for stochastic systems with time-varying interval delay. Circuits Syst Signal Process 28, 331–348 (2009)

    Article  Google Scholar 

  44. Y. Zhu, W.X. Zheng, D. Zhou, Quasi-synchronization of discrete-time Lur’e-type switched systems with parameter mismatches and relaxed PDT constraints. IEEE Trans Cybern 50(5), 2026–2037 (2020)

    Article  Google Scholar 

  45. Y. Zhu, W.X. Zheng, Multiple Lyapunov functions analysis approach for discrete-time switched piecewise-affine systems under dwell-time constraints. IEEE Trans. Autom. Control 65(5), 2177–2184 (2020)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

This work was supported by the Italian Ministry of Education, University, and Research, and the Consejo Nacional de Ciencia y Tecnología of Mexico under Grant 250611.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael V. Basin.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Celentano, L., Basin, M.V. Optimal Estimator Design for LTI Systems with Bounded Noises, Disturbances, and Nonlinearities. Circuits Syst Signal Process 40, 3266–3285 (2021). https://doi.org/10.1007/s00034-020-01635-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00034-020-01635-z

Keywords

Navigation