Skip to main content
Log in

Arsenic and lead in soil: impacts on element mobility and bioaccessibility

  • Original Paper
  • Published:
Environmental Geochemistry and Health Aims and scope Submit manuscript

Abstract

Long-term brown coal mining contributes to risk element contents in soils surrounding coal basins. However, there is a lack of bioaccessibility characterization of the risk elements in the soils at the impacted locations for estimation of the potential health risk, in relation to the effects of soil particle size and element origin. In this study, soils from different geological areas (geogenic vs. anthropogenic) were sampled around the Most brown coal basin, Czech Republic. These soils were passed through sieves to obtain seven aggregate size fractions. For an estimation of the oral bioaccessibility of As and Pb in the size fractions, the physiologically based extraction test was applied, whereas the potential pulmonary bioaccessibility of the elements was estimated by using both Gamble’s and Hatch’s tests. The results showed that the geochemical pattern of the investigated elements clearly separates the soil samples collected from the mountain region (mineralization from geogenic processes) from those of the basin region (extensive coal mining). For As, the results indicated that it poses higher risks in the anthropogenically affected basin region due to its higher gastro-intestinal and pulmonary bioaccessibility in soil samples in this area. A higher bioaccessibility of As in the soils was recorded in the finer grain size fractions, which are usually air-borne and can be easily ingested and/or inhaled, leading to potential health risks to humans and livestock. The opposite pattern, with a higher content on coarse particles, was recorded for Pb, indicating a potential risk of livestock in the non-forest mountainous areas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Acosta, J. A., Faz, A., Kalbittz, K., Jansen, B., & Martinez-Martinez, S. (2011). Heavy metals concentrations in particle size fractions from street dust of Murcia (Spain) as the basis for risk assessment. Journal of Environmental Monitoring, 13, 3087.

    CAS  Google Scholar 

  • Aitchison, J. (1986). The Statistical Analysis of Compositional Data. Chapman and Hall. Reprinted 2003 with additional material by The Blackburn Press.

    Google Scholar 

  • Al-Rajahi, A., Seaward, M. R., & Edwardst, H. G. (1996). Particle size effect for metal pollution analysis of atmospherically deposited dust. Atmospheric Environment, 30, 145–153.

    Google Scholar 

  • Antoniadis, V., Shaheen, S. M., Levizou, E., Shahid, M., Niazi, N. K., Vithanage, M., et al. (2019). A critical prospective analysis of the potential toxicity of the trace element regulations limits in soils worldwide: Are they protective concerning health risk assessment?—A review. Environment International, 127, 819–847.

    CAS  Google Scholar 

  • Banerjee, U. S., Guo, Z. H., Zhou, K. G., & Chai, L. Y. (2017). Distribution and plant availability of Cd, Pb, Cu and As in different particle size soil fractions. Journal of the Indian Chemical Society, 94, 1029–1035.

    CAS  Google Scholar 

  • Barsby, A., Mckinley, J. M., Ofterdinger, U., Young, M., Cave, M. R., & Wragg, J. (2012). Bioacessibility of trace elements in soils in Northern Ireland. Science of the Total Environment., 433, 398–417.

    CAS  Google Scholar 

  • Berlinger, B., Ellingsen, D. G., Naray, M., Zaray, G., & Thomassen, Y. (2008). A study of the bio-accessibility of welding fumes. Journal of Environmental Monitoring, 10, 1448–1453.

    CAS  Google Scholar 

  • Blume, H. P., Brumme, G. W., Fleige, H., Horn, R., Kandeler, E., Kogel-Knabner, I., et al. (2016). Scheffer/Schachtschabel soil science (16th ed.). Springer.

    Google Scholar 

  • Bohling, G., Davis, J., & Olea, R. J. H. (1998). Singularity and nonnormality in the classification of compositional data. Mathematical Geology, 30(1), 5–20.

    CAS  Google Scholar 

  • Bright, D. A., Richardson, G. M., & Dodd, M. (2006). Do current standards of practice in Canada measure what is relevant to human exposure at contaminated sites? I: A discussion of soil particle size and contaminant partitioning in soil. Human and Ecological Risk Assessment: An International Journal, 12(3), 591–605.

    CAS  Google Scholar 

  • Broadway, A., Cave, M. R., Wragg, J., Fordyce, F. M., Bewley, R. J. F., Graham, M. C., et al. (2010). Determination of the bioaccessibility of chromium in Glasgow soil and the implications for human health risk assessment. Science of the Total Environment, 409, 267–277.

    CAS  Google Scholar 

  • Bruce, S., Noller, B., Matanitobua, V., & Ng, J. (2007). In vitro physiologically based extraction test (PBET) and bioaccessibility of Arsenic and Lead from various mine waste materials. Journal of Toxicology and Environment Health, Part A: Current Issues, 70(19), 1700–1711.

    CAS  Google Scholar 

  • Cai, Y., Cabrera, J. C., Georgiadis, M., & Jayachandran, K. (2002). Assessment of arsenic mobility in the soils of some golf courses in South Florida. Science of the Total Environment, 291, 123–134.

    CAS  Google Scholar 

  • Charlesworth, S. M., & Lees, J. A. (1999). The distribution of heavy metals in deposited urban dusts and sediments, Coventry, England. Environmental Geochemistry and Health, 21(2), 97–115.

    CAS  Google Scholar 

  • Christensen, B. T. (2001). Physical fraction of soil and structural and functional complexity in organic matter turnover. European Journal of Soil Science, 52, 345–353.

    CAS  Google Scholar 

  • Csavina, J., Field, J., Taylor, M. P., Gao, S., Landazuri, A., Betterton, E. A., & Saez, A. E. (2012). A review on the importance of metals and metalloids in atmospheric dust and aerosol from mining operations. Science of the Total Environment, 433, 58–73.

    CAS  Google Scholar 

  • Davis, J. M., Otto, D. A., Weil, D. E., & Grant, L. D. (1993). The comparative developmental neurotoxicity of lead in humans and animals. Neurotoxicology and Teratology, 12(3), 21–29.

    Google Scholar 

  • Dung, T. T. T., Cappuyns, V., Swennen, R., & Phung, N. K. (2013). From geochemical background determination to pollution assessment of heavy metals in sediments and soils. Reviews in Environmental Science and Bio/technology, 2(4), 335–353.

    Google Scholar 

  • Egozcue, J. J., Pawlowsky-Glahn, V., Mateu-Figueras, G., & Barceló-Vidal, C. (2003). Isometric logratio transformations for compositional data analysis. Mathematical Geology, 35, 279–300.

    Google Scholar 

  • Entwistle, J. A., Hursthouse, A. S., Reis, P. A. M., & Stewart, A. G. (2019). Metalliferous mine dust: Human health impacts and the potential determinants of disease in mining communities. Current Pollution Reports, 5, 67–83.

    CAS  Google Scholar 

  • Fernandez-Caliani, J. C., Giraldez, M. I., & Barba-Brioso, C. (2019). Oral bioaccessibility and human health risk assessment of trace elements in agricultural soils impacted by acid mine drainage. Chemosphere, 237, 124441.

    CAS  Google Scholar 

  • Filzmoser, P., Hron, K., & Templ, M. (2012). Discriminant analysis for compositional data and robust parameter estimation. Computational Statistics and Data Analysis, 27(4), 585–604.

    Google Scholar 

  • Gong, C., Ma, L., Cheng, H., Liu, Y., Xu, D., Li, B., et al. (2014). Characterisation of the particle size fraction associated heavy metals in tropical arable soils from Hainan Island, China. Journal of Geochemical Exploration, 139, 109–114.

    CAS  Google Scholar 

  • Guney, M., Chapuis, R. P., & Zagury, G. J. (2017a). Lung bioaccessibility of contaminants in particular matter of geological origin. Environmental Science and Pollution Research, 23, 24422–24434.

    Google Scholar 

  • Guney, M., Bourges, C. M. J., Chapuis, R. P., & Zagury, G. J. (2017b). Lung bioaccessibility of As, Cu, Fe, Mn, Ni, Pb and Zn in fine fraction (< 20μm) from contaminated soils and mine tailings. Science of the Total Environment, 597, 378–386.

    Google Scholar 

  • Hemkemeyer, M., Christensen, B. T., Tebbe, C. C., & Hartman, M. (2019). Taxon-specific fungal preference for distinct soil particle size fractions. European Journal of Soil Biology, 94, 103103.

    Google Scholar 

  • Hong, Y. S., Song, K. H., & Chung, J. Y. (2014). Health effects of chronic arsenic exposure. Journal of Preventive Medicine and Public Health, 47(5), 245–252.

    Google Scholar 

  • Hooda, P. S. (2010). Trace elements in soils. Wiley.

    Google Scholar 

  • Hron, K., Templ, M., & Filzmoser, P. (2010). Imputation of missing values for compositional data using classical and robust methods. Computational Statistics and Data Analysis, 54(12), 3095–3107.

    Google Scholar 

  • Ikegami, M., Yoneda, M., Tsuji, T., Bannai, O., & Morisawa, S. (2014). Effects of particle on risk assessment of direct soil ingestion and metals adhered to children’s hands at playgrounds. Risk Analysis, 34(9), 1677–1687.

    Google Scholar 

  • ISO/DIS 19730:2008 Soil Quality—Extraction of Trace Elements Using Ammonium Nitrate Solution. International Organization for Standardization

  • ISO 11466:1995 Soil quality—Extraction of trace elements soluble in aqua regia. International Organization for Standardization

  • ISO 14869-1:2001 Soil quality—Dissolution for the determination of total element content—Part 1: Dissolution with hydrofluoric and perchloric acids. International Organization for Standardization

  • IUSS Working Group WRB. (2015). World Reference Base for Soil Resources 2014. FAO.

    Google Scholar 

  • Juhasz, A. L., Weber, J., & Smith, E. (2011). Impact of soil particle size and bioaccessibility on children and adult lead exposure in peri-urban contaminated soils. Journal of Hazardous Materials, 186, 1870–1879.

    CAS  Google Scholar 

  • Kabata-Pendias, A. (2010). Trace elements in soils and plants. CRC Press.

    Google Scholar 

  • Karadas, C., & Kara, D. (2011). In vitro gastro-intestinal method for the assessment of heavy metal bioavailability in contaminated soils. Environmental Science and Pollution Research, 18, 620–628.

    CAS  Google Scholar 

  • Kelly, F. J., & Fussell, J. C. (2012). Size, source and chemical composition as determinants of toxicity attributable to ambient particulate matter. Atmospheric Environment, 60, 504–526.

    CAS  Google Scholar 

  • Kumpiene, J., Giagnoni, L., Marschner, B., Denys, S., Mench, M., Adriaensen, K., et al. (2017). Assessment of methods for determining bioavailability of trace elements in soils: A review. Pedosphere, 27(3), 389–406.

    CAS  Google Scholar 

  • Lanno, R., Wells, J., Conder, J., Bradham, K., & Basta, N. (2004). The bioavailability of chemicals in soils for earthworms. Ecotoxicology and Environmental Safety, 57(1), 39–47.

    CAS  Google Scholar 

  • Lokeshappa, B., Dikshit, A. K., Luo, Y., Hutchinson, T. J., & Giammar, D. E. (2014). Assessing bioaccessible fractions of arsenic, chromium, lead, selenium and zinc in coal fly ashes. International Journal of Environmental Science and Technology, 11, 1601–1610.

    CAS  Google Scholar 

  • Lanzerstofer, C. (2017). Variations in the composition of house dust by particle size. Journal of Environmental Science and Health, Part A, 52(8), 770–777.

    Google Scholar 

  • Lyung, K., Selinus, O., Otabbong, E., & Berglund, M. (2006). Metal and arsenic distribution in soil particle sizes relevant to soil ingestion by children. Applied Geochemistry, 21, 1613–1624.

    Google Scholar 

  • Ma, J., Li, Y., Liu, Y., Lin, C., & Cheng, H. (2019). Effects of soil particle size on metal bioaccessibility and health risk assessment. Ecotoxicology and Environmental Safety, 186, 109748.

    CAS  Google Scholar 

  • Martin, R., Dowling, K., Pearce, D. C., Florentine, S., McKnight, S., Stelcer, E., et al. (2017). Trace metal content in inhalable particulate matter (PM2.5–10 and PM2.5) collected from historical mine waste deposits using a laboratory-based approach. Environmental Geochemistry and Health, 39, 549–563.

    CAS  Google Scholar 

  • Martin, R., Dowling, K., Nankervis, S., Pearce, D., Florentine, S., & McKnight, S. (2018). In vitro assessment of arsenic mobility in historical mine waste dust using simulated lung fluid. Environmental Geochemistry and Health, 40, 1037–1049.

    CAS  Google Scholar 

  • Mbengue, S., Alleman, L. Y., & Flament, P. (2015). Bioaccessibility of trace elements in fine and ultrafine atmospheric particles in an industrial environment. Environmental Geochemistry and Health, 37, 875–889.

    CAS  Google Scholar 

  • Mendoza, C. J., Garrido, R. T., Quilodrán, R. C., Segovia, C. M., & Parada, A. J. (2017). Evaluation of the bioaccessible gastric and intestinal fractions of heavy metals in contaminated soils by means of a simple bioaccessibility extraction test. Chemosphere, 176, 81–88.

    Google Scholar 

  • Ministry for the Environment, Thorndon, Wellington (2016). Accounting for bioavailability in contaminated land site-specific health assessment. Report number: 1542820-003-R-Rev0.

  • Mogollon, J. L., & Bifano, C. (2000). Tracking the metal distribution in the tropical Valencia lake catchment: Soil, rivers and lake. Environmental Geochemistry and Health, 22(2), 131–153.

    CAS  Google Scholar 

  • Morman, S. A., Plumlee, G. S., & Smith, D. B. (2009). Application of in vitro extraction studies to evaluate element bioaccessibility in soils from a transect across the United States and Canada. Applied Geochemistry, 24, 1454–1463.

    CAS  Google Scholar 

  • Mukhtorova, D., Hlava, J., Száková, J., Kubík, Š, Vrabec, V., & Tlustoš, P. (2019). Risk elements accumulation in Coleoptera and Hymenoptera (Formicidae) living in an extremely contaminated area—A preliminary study. Environmental Monitoring and Assessment, 191, 432.

    Google Scholar 

  • Ng, J. C., Juhasz, A., Smith, E., & Naidu, R. (2015). Assessing the bioavailability and bioaccessibility of metals and metalloids. Environmental Science and Pollution Research, 22, 8802–8825.

    Google Scholar 

  • Niu, J., Rasmussen, P. E., Hassan, N. M., & Vincent, R. (2010). Concentration distribution and bioaccessibility of trace elements in nano and fine urban airborne particulate matter: Influence of particle size. Water, Air, & Soil Pollution, 213, 211–225.

    CAS  Google Scholar 

  • Pawlowsky-Glahn, V., & Egozcue, J. J. (2001). Geometric approach to statistical analysis on the simplex. Stochastic Environmental Research and Risk Assessment, 15(5), 384–398.

    Google Scholar 

  • Pawlowsky-Glahn, V., & Egozcue, J. J. (2020). Compositional data in geostatistics: A log-ratio based framework to analyze regionalized compositions. Mathematical Geosciences. https://doi.org/10.1007/s11004-020-09873-2

    Article  Google Scholar 

  • Pelfrene, A., & Douay, F. (2018). Assessment of oral and lung bioaccessibility of Cd and Pb from smelter-impacted dust. Environmental Science and Pollution Research, 25, 3718–3730.

    CAS  Google Scholar 

  • Quevauviller, P., Ure, A., Muntau, H., & Griepink, B. (1993). Improvement of analytical measurements within the BCR-program—Single and sequential extraction procedures applied to soil and sediment analysis. International Journal of Environmental Analytical Chemistry, 51, 129–134.

    CAS  Google Scholar 

  • Qin, J., Nworie, O. E., & Lin, C. (2016). Particle size effects on bioaccessible amounts of ingestible soil-borne toxic elements. Chemosphere, 159, 442–448.

    CAS  Google Scholar 

  • R Core Team. (2012). R: A language and environment for statistical computing. R version 2.15.2. R foundation for statistical computing. Vienna, Austria. http://www.r-project.org/.

  • Rosende, M., Magalhaes, L. M., Segundo, M. A., & Miro, M. (2014). Assessing oral bioaccessibility of trace elements in soils under worst-case scenarios by automated in-line dynamic extractions as front end to inductively coupled plasma atomic emission spectrometry. Analytica Chimica Acta, 842, 1–10.

    CAS  Google Scholar 

  • Ruby, M. V., Davis, A., Schoof, R., Eberle, S., & Sellstone, C. M. (1996). Estimation of lead and arsenic bioavailability using a physiologically based extraction test. Environmental Science and Technology, 30, 422–430.

    CAS  Google Scholar 

  • Ruby, M. V., Schoof, R., Brattin, W., Goldade, M., Post, G., Harnois, M., Mosby, D. E., Casteel, S., Berti, W., Carpenter, M., Edwards, D., Cragin, D., & Chappell, W. (1999). Advances in evaluating the oral bioavailability of inorganics in soil for use in human health risk assessment. Environmental Science and Technology, 33, 3697–3705.

    CAS  Google Scholar 

  • Sansalone, J. J., & Buchberger, S. G. (1997). Characterization of solid and metal element distributions in urban highway stormwater. Water Science and Technology, 36, 155–160.

    CAS  Google Scholar 

  • Sharp, R. M., & Brabander, D. J. (2017). Lead (Pb) bioaccessibility and mobility assessment of urban soils and composts: Fingerprinting sources and refining risks to support urban agriculture. GeoHealth, 1, 333–345.

    Google Scholar 

  • Smith, E., Weber, J., & Juhasz, A. L. (2009). Arsenic distribution and bioaccessibility across particle fractions in historically contaminated soils. Environmental Geochemistry and Health, 31, 85–92.

    CAS  Google Scholar 

  • Stankovic, S., Kalaba, P., & Stankovic, A. R. (2014). Biota as toxic metal indicators. Environmental Chemistry Letters, 12, 63–84.

    CAS  Google Scholar 

  • Templ, M., Hron, K., & Filzmoser, P. (2011). robCompositions: an R-package for robust statistical analysis of compositional data. In V. Pawlowsky-Glahn & A. Buccianti (Eds.), Compositional data analysis. Theory and applications (pp. 341–355). Wiley.

    Google Scholar 

  • Thornton, I., & Abrahams, P. (1983). Soil ingestion—A major pathway of heavy metals into livestock grazing contaminated land. Science of the Total Environment, 28, 287–294.

    CAS  Google Scholar 

  • UK EA-United Kingdom Environmental Agency. (2009). Human health toxicological assessment of contaminants in soil. Science Report-Sco50021/SR2, Bristol, England.

  • US EPA-United States Environmental Protection Agency. (2007). Guidance for Evaluating the Oral Bioavailability of Metals in Soils for Use in Human Health Risk. Assessment. OSWER 9285.7-80 (Washington, DC, USA).

  • US EPA-United States Environmental Protection Agency. (2017). Standard operating procedure for an intro bioaccessibility assay for Lead and Arsenic in soil. OLEM 9200, vols. 2-164 (Washington, DC, USA).

  • Vácha, R., Sáňka, M., Sáňka, O., Skála, J., & Čechmánková, J. (2013). The Fluvisol and sediment trace element contamination level as related to their geogenic and anthropogenic source. Plant, Soil and Environment, 59(3), 136–142.

    Google Scholar 

  • Vácha, R., Skála, J., Čechmánková, J., Horváthová, V., & Hladík, J. (2015). Toxic elements and persistent organic pollutants derived from industrial emissions in agricultural soils of the Northern Czech Republic. Journal of Soils and Sediments, 15, 1813–1824.

    Google Scholar 

  • van den Boogaart, K.G., & Tolosana-Delgado, R., Bren, M. (2011). Compositions: Compositional data analysis, R Package Version 1.10–2. http://cran.rproject.org/web/packages/compositions/compositions.pdf.

  • Venables, W. N., & Ripley, B. D. (2002). Modern applied statistics with S. Springer.

    Google Scholar 

  • Vijver, M. G., Spijker, J., Vink, J. P. M., & Posthuma, L. (2008). Determining metal origins and availability in fluvial deposits by analysis of geochemical baselines and solid-solution partitioning measurements and modelling. Environmental Pollution, 156, 832–839.

    CAS  Google Scholar 

  • Walraven, N., Bakker, M., Van Os, B. J. H., Klaver, GTh., Middelburg, J. J., & Davies, G. R. (2015). Factors controlling the oral bioaccessibility of anthropogenic Pb in polluted soils. Science of the Total Environment, 506–507, 149–163.

    Google Scholar 

  • Wang, X., Qin, Y., & Chen, Y. (2006). Heavy meals in urban roadside soils, part 1: Effect of particle size fractions on heavy metals partitioning. Environmental Geology, 50, 1061–1066.

    CAS  Google Scholar 

  • Waterlot, C., Douay, F., & Pelfrene, A. (2017). Chemical availability of Cd, Pb, and Zn in anthropogenically polluted soils: Assessing the geochemical reactivity and oral bioaccessibility. Pedosphere, 27(3), 616–629.

    CAS  Google Scholar 

  • Wenzel, W. W., Kirchbaumer, N., Prohaska, T., Stingeder, G., Lombi, E., & Adriano, D. C. (2001). Arsenic fractionation in soils using an improved sequential extraction procedure. Analytica Chimica Acta, 436, 1–15.

    Google Scholar 

  • Wiseman, C. L. S., & Zereini, F. (2014). Characterizing metal(loid) solubility in airborne PM10, PM2.5, PM1 in Frankfurt, Germany using simulated lung fluids. Atmospheric Environment, 89, 282–289.

    CAS  Google Scholar 

  • Yutong, Z., Qing, X., & Shenggao, L. (2016). Distribution, bioavailability, and leachability of heavy metals in soil particle size fractions of urban soils (northern China). Environmental Science and Pollution Research, 23, 14600–14607.

    Google Scholar 

  • Zádrapová, D., Titěra, A., Száková, J., Čadková, Z., Cudlín, O., Najmanová, J., et al. (2019). Mobility and bioaccessibility of risk elements in the area affected by the long -term opencast coal mining. Journal of Environmental Science and Health, Part A, 54(12), 1159–1169.

    Google Scholar 

  • Zbíral, J., Honsa, I., Malý, S., & Čižmár, D. (2004). Soil analysis III. Central Institute for Supervising and Testing in Agriculture. in Czech.

    Google Scholar 

  • Zeng, F., Ali, S., Zhang, H., Ouyang, Y., Qiu, B., Wu, F., et al. (2011). The influence of pH and organic matter content in paddy soil on heavy metal availability and their uptake by rice plants. Environmental Pollution, 159, 84–91.

    CAS  Google Scholar 

  • Zhang, M. K., He, Z. L., Calvert, D. V., Stoffella, P. J., Yang, X. E., & Li, Y. C. (2003). Phosphorus and heavy metal attachment and release in sandy soil aggregate fractions. Soil Science Society of America Journal, 67, 1158–1167.

    CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the grant project of GAČR 17-00859S. Correction and improvement in language were provided by Proof-Reading-Service.com Ltd., Devonshire Business Centre, Works Road, Letchworth Garden City SG6 1GJ, UK.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiřina Száková.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file 1 (DOCX 453 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Skála, J., Boahen, F., Száková, J. et al. Arsenic and lead in soil: impacts on element mobility and bioaccessibility. Environ Geochem Health 44, 943–959 (2022). https://doi.org/10.1007/s10653-021-01008-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10653-021-01008-8

Keywords

Navigation