Skip to main content
Log in

Synthesis and antibacterial activity of novel Schiff bases of thiosemicarbazone derivatives with adamantane moiety

  • Original Research
  • Published:
Medicinal Chemistry Research Aims and scope Submit manuscript

Abstract

Increased bacterial resistance to antibiotics is a major threat to human health, and it is particularly important to develop novel antibiotic drugs. Here, we designed a series of Schiff base thiosemicarbazone derivatives containing an adamantane moiety, and carried out the structural characterization of the compounds and in vitro antibacterial activity tests. Compound 7e was as effective as the commonly used antibiotic ampicillin against the Gram-negative bacterium Escherichia coli, and compound 7g had a good inhibitory effect against Gram-positive Bacillus subtilis. These findings provide data for the development of better thiosemicarbazone antibacterial agents.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1

Similar content being viewed by others

References

  1. Ventola CL. The antibiotic resistance crisis: Part 1: Causes and threats. Pharm Ther. 2015;40:277–83

    Google Scholar 

  2. Brooks BD. Therapeutic strategies to combat antibiotic resistance. Adv Drug Deliv Rev. 2014;78:14–27. https://doi.org/10.1016/j.addr.2014.10.027

    Article  PubMed  CAS  Google Scholar 

  3. Livermore DM. The need for new antibiotics. Clin Microbiol Infect. 2004;10:1–9. https://doi.org/10.1111/j.1465-0691.2004.1004.x

    Article  PubMed  Google Scholar 

  4. Puertoa SA, Fernandeza GJ, Castillo LDJ, Pino SJM, Angulo PG. In vitro activity of beta-lactam and non-beta-lactam antibiotics in extended-spectrum beta-lactamase-producing clinical isolates of Escherichia coli. Diagn Microbiol Infect Dis. 2006;54:135–9. https://doi.org/10.1016/j.diagmicrobio.2005.08.018

    Article  CAS  Google Scholar 

  5. Krishnanjaneyulu IS, Saravanan G, Vamsi J, Supriya P, Bhavana JU, Sunil Kumar MV. Synthesis, characterization and antimicrobial activity of some novel benzimidazole derivatives. J Adv Pharm Technol Res. 2014;5:21–27. https://doi.org/10.4103/2231-4040.126983

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. Moellering RC Jr. Discovering new antimicrobial agents. Int J Antimicrob Agents. 2011;37:2–9. https://doi.org/10.1016/j.ijantimicag.2010.08.018. 2011

    Article  PubMed  CAS  Google Scholar 

  7. De Araújo Neto LN, De Lima M, do CA, De Oliveira JF, et al. Thiophene-thiosemicarbazone derivative (L10) exerts antifungal activity mediated by oxidative stress and apoptosis in C. albicans. Chem Biol Interact. 2020;320:109028 https://doi.org/10.1016/j.cbi.2020.109028

    Article  PubMed  CAS  Google Scholar 

  8. Khan SA, Kumar P, Joshi R, Iqbal PF, Saleem K. Synthesis and in vitro antibacterial activity of new steroidal thiosemicarbazone derivatives. Eur J Med Chem. 2008;43:2029–34. https://doi.org/10.1016/j.ejmech.2007.12.004

    Article  PubMed  CAS  Google Scholar 

  9. Matsa R, Makam P, Kaushik M, Hoti SL, Kannan T. Thiosemicarbazone derivatives: design, synthesis and in vitro antimalarial activity studies. Eur J Pharm Sci. 2019;137:104986 https://doi.org/10.1016/j.ejps.2019.104986

    Article  PubMed  CAS  Google Scholar 

  10. Zhang X, Qi F, Wang S, Song J, Huang J. Synthesis, structure, in silico ADME evaluation and in vitro antioxidant of (E)-N-(4-ethylphenyl)-2-(isomeric methylbenzylidene) thiosemicarbazone derivatives. J Mol Struct. 2020;1199:126972 https://doi.org/10.1016/j.molstruc.2019.126972

    Article  CAS  Google Scholar 

  11. Trotsko N, Golus J, Kazimierczak P, Paneth A, Przekora A, Ginalska G, et al. Design, synthesis and antimycobacterial activity of thiazolidine-2,4-dione-based thiosemicarbazone derivatives. Bioorg Chem. 2020;97:103676 https://doi.org/10.1016/j.bioorg.2020.103676

    Article  PubMed  CAS  Google Scholar 

  12. He Z, Qiao H, Yang F, Zhou W, Gong Y, Zhang X, et al. Novel thiosemicarbazone derivatives containing indole fragment as potent and selective anticancer agent. Eur J Med Chem. 2019;184:111764 https://doi.org/10.1016/j.ejmech.2019.111764

    Article  PubMed  CAS  Google Scholar 

  13. Pham VH, Phan TPD, Phan DC, Vu BD. Synthesis and bioactivity of thiosemicarbazones containing adamantane skeletons. Molecules. 2020;25:324 https://doi.org/10.3390/molecules25020324

    Article  PubMed Central  CAS  Google Scholar 

  14. Siddiqui EJ, Azad I, Khan AR, Khan T. Thiosemicarbazone complexes as versatile medicinal chemistry agents: a review. J Drug Deliv Ther. 2019;9:689–703. https://doi.org/10.22270/jddt.v9i3.2888

    Article  CAS  Google Scholar 

  15. Pervez H, Iqbal MS, Tahir MY, Choudhary MI, Khan KM. Synthesis of some N4-substituted isatin-3-thiosemicarbazones. Nat Prod Res. 2007;21:1178–86. https://doi.org/10.1080/14786410601129770

    Article  PubMed  CAS  Google Scholar 

  16. Basarić N, Sohora M, Cindro N, Mlinarić-Majerski K, De Clercq E, Balzarini J. Antiproliferative and antiviral activity of three libraries of adamantane derivatives. Arch Pharm. 2014;347:334–40. https://doi.org/10.1002/ardp.201300345. 2014

    Article  CAS  Google Scholar 

  17. Fesatidou M, Zagaliotis P, Camoutsis C, et al. 5-Adamantan thiadiazole-based thiazolidinones as antimicrobial agents. Design, synthesis, molecular docking and evaluation. Bioorg Med Chem. 2018;26:4664–76. https://doi.org/10.1016/j.bmc.2018.08.004

    Article  PubMed  CAS  Google Scholar 

  18. Anusha S, Mohan CD, Ananda H, et al. Adamantyl-tethered-biphenylic compounds induce apoptosis in cancer cells by targeting Bcl homologs. Bioorg Med Chem Lett. 2016;26:1056–60. https://doi.org/10.1016/j.bmcl.2015.12.026

    Article  PubMed  CAS  Google Scholar 

  19. Göktaş F, Vanderlinden E, Naesens L, Cesur N, Cesur Z. Microwave assisted synthesis and anti-influenza virus activity of 1-adamantyl substituted N-(1-thia-4-azaspiro[4.5]decan-4-yl)carboxamide derivatives. Bioorg Med Chem. 2012;20:7155–9. https://doi.org/10.1016/j.bmc.2012.09.064

    Article  PubMed  CAS  Google Scholar 

  20. Fytas C, Zoidis G, Tsotinis A, Fytas G, Khan MA, Akhtar S, et al. Novel 1-(2-aryl-2-adamantyl)piperazine derivatives with antiproliferative activity. Eur J Med Chem. 2015;93:281–90. https://doi.org/10.1016/j.ejmech.2015.02.021

    Article  PubMed  CAS  Google Scholar 

  21. Aguiar DF, Dutra LLA, Dantas WM, et al. Synthesis, antitumor and cytotoxic activity of new adamantyl O-acylamidoximes and 3-aryl-5-adamantane-1, 2, 4-oxadiazole derivatives. Chem Sel. 2019;4:9112–8. https://doi.org/10.1002/slct.201901285

    Article  CAS  Google Scholar 

  22. Tsuzuki N, Hama T, Kawada M, Hasui A, Konishi R, Shiwa S, et al. Adamantane as a brain-directed drug carrier for poorly absorbed drug. 2. AZT derivatives conjugated with the 1-adamantane moiety. J Pharm Sci. 1994;83:481–4. https://doi.org/10.1002/jps.2600830407

    Article  PubMed  CAS  Google Scholar 

  23. Gerzon K, Krumkalns EV, Brindle RL, Marshall FJ, Root MA. The adamantyl group in medicinal agents. I. Hypoglycemic N-arylsulfonyl-N’-adamantylureas. J Med Chem. 1963;6:760–3. https://doi.org/10.1021/jm00342a029

    Article  PubMed  CAS  Google Scholar 

  24. Rapala RT, Kraay RJ, Gerzon K. The adamantyl group in medicinal agents. II. Anabolic steroid 17-beta-adamantoates. J Med Chem. 1965;8:580–3. https://doi.org/10.1021/jm00329a007

    Article  PubMed  CAS  Google Scholar 

  25. Gerzon K, Kau D. The adamantyl group in medicinal agents. 3. Nucleoside 5’-adamantoates. The adamantoyl function as a protecting group. J Med Chem. 1967;10:189–99. https://doi.org/10.1021/jm00314a014

    Article  PubMed  CAS  Google Scholar 

  26. Martin YC, Kofron JL, Traphagen LM. Do structurally similar molecules have similar biological activity? J Med Chem. 2002;45:4350–8. https://doi.org/10.1021/jm020155c

    Article  PubMed  CAS  Google Scholar 

  27. Bender A, Jenkins JL, Scheiber J, Sukuru SCK, Glick M, Davies J. How similar are similarity searching methods? A principal component analysis of molecular descriptor space. J Chem Inf Model. 2009;49:108–19. https://doi.org/10.1021/ci800249s

    Article  PubMed  CAS  Google Scholar 

  28. Davis WW, Stout TR. Disc plate method of microbiological antibiotic assay. II. Novel procedure offering improved accuracy. Appl Microbiol. 1971;22:666–70

    Article  CAS  Google Scholar 

  29. Valentine SC, Contreras D, Tan S, Real LJ, Chu S, Xu HH. Phenotypic and molecular characterization of Acinetobacter baumannii clinical isolates from nosocomial outbreaks in Los Angeles County, California. J Clin Microbiol. 2008;46:2499–507. https://doi.org/10.1128/JCM.00367-08

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. CLSI. Methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically; Approved Standard-Ninth Edition. M07-A9. Wayne, PA: Clinical and Laboratory Standards Institute; 2012

    Google Scholar 

Download references

Acknowledgements

We thank Liwen Bianji, Edanz Group China (www.liwenbianji.cn/ac), for editing the English text of a draft of this manuscript.

Funding

This work was financially supported by the National Natural Science Foundation of China (21502008) and Natural Science Foundation of Jilin Province (00005005031).

Author information

Authors and Affiliations

Authors

Contributions

JZ and YX performed all experiments, purified all compounds, analyzed the data and summarized the results. JZ tested all compounds for their antibacterial activity. DL and GT helped in compiling the data of the manuscript. YX and RH conceived and designed this research and wrote the manuscript. All authors have contributed to the final version and approved the final manuscript.

Corresponding authors

Correspondence to Ruibin Hou or Yan Xia.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, J., Teng, G., Li, D. et al. Synthesis and antibacterial activity of novel Schiff bases of thiosemicarbazone derivatives with adamantane moiety. Med Chem Res 30, 1534–1540 (2021). https://doi.org/10.1007/s00044-021-02759-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00044-021-02759-w

Keywords

Navigation