Skip to main content
Log in

Modification of the Marching Cubes Algorithm to Obtain a 3D Representation of a Planar Image

  • Published:
Programming and Computer Software Aims and scope Submit manuscript

Abstract

The registration of a 3D model over an image can be seen as the alignment of visual correspondences extracted from these two data. This is a challenging task and it is even more complex when the two images have a different modality. This paper introduces an approach that allows matching features detected in two different modalities: photographs and 3D models, by using a common 2D representation. Our approach is based on a modification of the Marching Cubes algorithm aiming to remove ambiguous cases without adding further calculations in each cube. We share the idea about the crucial importance of splitting the equivalence cases into two classes. Considering all the possible states inside/outside in the four corners of a cube side, indeed, there are only four non-trivial cases after eliminating those equivalences through the rotation. The obtained results allow us to validate the feasibility of the proposed methodology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.

Similar content being viewed by others

REFERENCES

  1. Kumar, T.S. and Vijai, A., 3D reconstruction of face from 2D CT scan images, Procedia Eng., 2012, vol. 30, pp. 970–977.

    Article  Google Scholar 

  2. Cirne, M. and Pedrini, H., Marching cubes technique for volumetric visualization accelerated with graphics processing units, J. Braz. Comput. Soc., 2013, vol. 19, p. 09.

  3. Newman, T. and Yi, H., A survey of the marching cubes algorithm, Comput. Graph., 2006, vol. 30, pp. 854–879.

    Article  Google Scholar 

  4. Long, Z. and Nagamune, K., A marching cubes algorithm: application for three-dimensional surface reconstruction based on endoscope and optical fiber, Information (Japan), 2015, vol. 18, pp. 1425–1437.

    Google Scholar 

  5. Lorensen, W.E. and Cline, H.E., Marching cubes: a high resolution 3D surface construction algorithm, SIGGRAPH Comput. Graph., 1987, vol. 21, no. 4, pp. 163–169.

    Article  Google Scholar 

  6. Durst, M.J., Letters: additional reference to marching cubes, Comput. Graph., 1988, vol. 22, no. 2, pp. 72–73.

    Article  Google Scholar 

  7. Nielson, G. and Hamann, B., The asymptotic decider: resolving the ambiguity in marching cubes, Proc. 26th IEEE Conf. on Visualization, Tempe, AZ, Oct. 22–25, 1991, pp. 83–91.

  8. Natarajan, B., On generating topologically consistent isosurfaces from uniform samples, Visual Comput., 1994, vol. 11, pp. 52–62.

    Article  Google Scholar 

  9. Chernyaev, E.V., Marching cubes 33: construction of topologically correct isosurfaces, Tech. Rep., Inst. for High Energy Physics, 1995.

    Google Scholar 

  10. Custodio, L., Pesco, S., and Silva, C., An extended triangulation to the marching cubes 33 algorithm, J. Braz. Comput. Soc., 2019, vol. 25, p. 12.

    Article  Google Scholar 

  11. Gong, F. and Zhao, X., Three-dimensional reconstruction of medical image based on improved marching cubes algorithm, Proc. Int. Conf. on Machine Vision and Human-Machine Interface, Kaifen, 2010, pp. 608–611.

  12. Liu, S. and Peng, J., Optimization of reconstruction of 2D medical images based on computer 3D reconstruction technology, J. Digital Inf. Manag., 2015, vol. 13, pp. 142–146.

    Google Scholar 

  13. Olshanskii, M.A., Reusken, A., and Grande, J., A finite element method for elliptic equations on surfaces, SIAM J. Num. Anal., 2009, vol. 47, 3339–3358.

    Article  MathSciNet  Google Scholar 

  14. Chernyshenko, A.Y. and Olshanskii, M.A., An adaptive octree finite element method for PDEs posed on surfaces, Comput. Methods Appl. Mech. Eng., 2015, vol. 291, pp. 146–172.

    Article  MathSciNet  Google Scholar 

  15. Bonito, A., Nochetto, R.H., and Pauletti, M.S., Dynamics of biomembranes: effect of the bulk fluid, Math. Model. Nat. Phenom., 2011, vol. 6, no. 5, pp. 25–43.

    Article  MathSciNet  Google Scholar 

  16. Cacciari, M. and Salam, G.P., Dispelling the N 3 myth for the k t jet-finder, Phys. Lett. B, 2006, vol. 641, no. 1, pp. 57–61.

    Article  Google Scholar 

  17. Ulrich, T., Rendering massive terrains using chunked level of detail control, in SIGGRAPH 2002 Super-Size It! Scaling up to Massive Virtual Worlds Course Notes, New York: ACM Press, 2002.

    Google Scholar 

  18. Nielson, G.M., Zhang, L., Lee, K., and Huang, A., Parameterizing marching cubes isosurfaces with natural neighbor coordinates, in Advances in Geometric Modeling and Processing, Chen, F. and Jüttler, B., Eds., Berlin, Heidelberg: Springer, 2008, pp. 315–328.

    Google Scholar 

  19. Van Gelder, A. and Wilhelms, J., Topological considerations in isosurface generation, ACM Trans. Graph., 1994, vol. 13, no. 4, pp. 337–375.

    Article  Google Scholar 

  20. Farin, G.E., Curves and Surfaces for Computer-Aided Geometric Design: a Practical Code, 4th ed., Acad. Press, 1996.

    Google Scholar 

  21. Montani, C., Scateni, R., and Scopigno, R., A modified look-up table for implicit disambiguation of marching cubes, Visual Comput., 1994, vol. 10, pp. 353–355.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Delia Irazú Hernández Farías, Rafael Guzmán Cabrera, Teodoro Cordova Fraga, José Zacarías Huamaní Luna or Jose Francisco Gomez Aguilar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hernández Farías, D.I., Cabrera, R.G., Fraga, T.C. et al. Modification of the Marching Cubes Algorithm to Obtain a 3D Representation of a Planar Image. Program Comput Soft 47, 215–223 (2021). https://doi.org/10.1134/S0361768821030051

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0361768821030051

Navigation