Skip to main content
Log in

Discrete-time integral terminal sliding mode-based speed tracking control for a robotic fish

  • Original paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

This paper proposed a discrete-time integral terminal sliding mode (DITSM)-based forward speed tracking control for a robotic fish (RF). Due to the difficulty of quantification for the hydrodynamic model of RF during swimming, the head-yawing effect is considered in the obstructive thrust and then the RF dynamic model is further optimized via a data-driven approach. Compared with the traditional robotic fish model, the established model can provide sufficient thrust for the swimming of robotic fish and effectively improve the model accuracy. The DITSM control based on the accurate RF model is proposed by considering the head-yawing effect in order to achieve high-precision and robust speed tracking performance. The real-time experimental results are demonstrated to verify that the proposed control with head-yawing can provide with high-accuracy speed tracking for the RF.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Sfakiotakis, M., Lane, D.M., Davies, J.B.C.: Review of fish swimming modes for aquatic locomotion. IEEE J. Ocean. Eng. 24(2), 237–252 (1999)

    Article  Google Scholar 

  2. Phamduy, P., Cheong, J., Porfiri, M.: An autonomous charging system for a robotic fish. IEEE/ASME Trans. Mechatron. 21(6), 2953–2963 (2016)

    Article  Google Scholar 

  3. Zhong, Y., Li, Z., Du, R.: A novel robot fish with wire-driven active body and compliant tail. IEEE/ASME Trans. Mechatron. 22(4), 1633–1643 (2017)

    Article  Google Scholar 

  4. Pollard, B., Tallapragada, P.: Passive appendages improve the maneuverability of fishlike robots. IEEE/ASME Trans. Mechatron. 24(4), 1586–1596 (2019)

    Article  Google Scholar 

  5. Wang, W., Dai, X., Li, L., Gheneti, B.H., Ding, Y., Yu, J., Xie, G.: Three-dimensional modeling of a fin-actuated robotic fish with multimodal swimming. IEEE/ASME Trans. Mechatron. 23(4), 1641–1652 (2018)

    Article  Google Scholar 

  6. Niu, X., Xu, J., Ren, Q., Wang, Q.: Locomotion learning for an anguilliform robotic fish using central pattern generator approach. IEEE Trans. Industr. Electron. 61(9), 4780–4787 (2014)

    Article  Google Scholar 

  7. Harper, K.A., Berkemeier, M.D., Grace, S.: Modeling the dynamics of spring-driven oscillating-foil propulsion. IEEE J. Ocean. Eng. 23(3), 285–296 (1998)

    Article  Google Scholar 

  8. Wang, H., Mi, C., Cao, Z., Zheng, J., Man, Z., Jin, X., Tang, H.: Precise discrete-time steering control for robotic fish based on data-assisted technique and super-twisting-like algorithm. IEEE Trans. Ind. Electron. 67(12), 10587–10599 (2020)

    Article  Google Scholar 

  9. Behbahani, S.B., Tan, X.: Design and modeling of flexible passive rowing joint for robotic fish pectoral fins. IEEE Trans. Rob. 32(5), 1119–1132 (2016)

    Article  Google Scholar 

  10. Jia, Y., Wang, L.: Leader–follower flocking of multiple robotic fish. IEEE/ASME Trans. Mechatron. 20(3), 1372–1383 (2015)

    Article  Google Scholar 

  11. Yu, J., Wang, L., Shao, J., Tan, M.: Control and coordination of multiple biomimetic robotic fish. IEEE Trans. Control Syst. Technol. 15(1), 176–183 (2007)

    Article  Google Scholar 

  12. Yu, J., Wu, Z., Yang, X., Yang, Y., Zhang, P.: Underwater target tracking control of an untethered robotic fish with a camera stabilizer. IEEE Trans. Syst., Man, Cybern.: Syst. 1, 1–12 (2020)

    Google Scholar 

  13. Lighthill, M.J.: Note on the swimming of slender fish. J. Fluid Mech. 9, 305–317 (1960)

    Article  MathSciNet  Google Scholar 

  14. Lighthill, M.J.: Large-amplitude elongated-body theory of fish locomotion. Proc. R. Soc. Lond. 179(1055), 125–138 (1971)

    Google Scholar 

  15. Porez, M., Boyer, F., Ijspeert, A.J.: Improved lighthill fish swimming model for bio-inspired robots: modeling, computational aspects and experimental comparisons. Int. J. Robot. Res. 33(10), 1322–1341 (2014)

    Article  Google Scholar 

  16. Niu, X., Xu, J., Ren, Q., Wang, Q.: Locomotion generation and motion library design for an anguilliform robotic fish. J. Bionic Eng. 10(3), 251–264 (2013)

    Article  Google Scholar 

  17. Wen, L., Wang, T.M., Wu, G.H., Liang, J.H.: Hydrodynamic investigation of a self-propelled robotic fish based on a force-feedback control method. Bioinspir. Biomim. 7(3), 1–17 (2012)

    Article  Google Scholar 

  18. Ren, Q., Xu, J., Li, X.: A data-driven motion control approach for a robotic fish. J. Bionic Eng. 12(3), 382–394 (2015)

    Article  Google Scholar 

  19. Su, Z., Yu, J., Tan, M., Zhang, J.: Implementing flexible and fast turning maneuvers of a multijoint robotic fish. IEEE/ASME Trans. Mechatron. 19(1), 329–338 (2014)

    Article  Google Scholar 

  20. Wohl, S., Schuster, S.: The predictive start of hunting archer fish: a flexible and precise motor pattern performed with the kinematics of an escape C-start. J. Exp. Biol. 210, 311–324 (2007)

    Article  Google Scholar 

  21. Zhang, S., Qian, Y., Liao, P., Qin, F., Yang, J.: Design and control of an agile robotic fish with integrative biomimetic mechanisms. IEEE/ASME Trans. Mechatron. 21(4), 1846–1857 (2016)

    Article  Google Scholar 

  22. Yu, J., Tan, M., Wang, S., Chen, E.: Development of a biomimetic robotic fish and its control algorithm. IEEE Trans. Syst. Man Cybern. 34(4), 1798–1810 (2004)

    Article  Google Scholar 

  23. Wen, L., Wang, T., Wu, G., Liang, J., Wang, C.: Novel method for the modeling and control investigation of efficient swimming for robotic fish. IEEE Trans. Ind. Electron. 59(8), 3176–3188 (2012)

    Article  Google Scholar 

  24. Verma, S., Xu, J.: Data-assisted modeling and speed control of a robotic fish. IEEE Trans. Ind. Electron. 64(5), 4150–4157 (2017)

    Article  Google Scholar 

  25. Verma, S., Xu, J.: Analytic modeling for precise speed tracking of multilink robotic fish. IEEE Trans. Ind. Electron. 65(7), 5665–5672 (2018)

    Article  Google Scholar 

  26. Li, Z.M., Chang, X.H., Park, J.H.: Quantized static output feedback fuzzy tracking control for discrete-time nonlinear networked systems with asynchronous event-triggered constraints. IEEE Trans. Syst., Man, Cybern.: Syst. 1, 1–12 (2019)

    Google Scholar 

  27. Li, Z.M., Park, J.H.: Dissipative fuzzy tracking control for nonlinear networked systems with quantization. IEEE Trans. Syst., Man, Cybern.: Syst. 1, 1–12 (2018)

    Google Scholar 

  28. Ding, S., Li, S.: Second-order sliding mode controller design subject to mismatched term. Automatica 77, 388–392 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  29. Hu, Y., Wang, H., He, S., Zheng, J., Ping, Z., Shao, K., Cao, Z., Man, Z.: Adaptive tracking control of an electronic throttle valve based on recursive terminal sliding mode. IEEE Trans. Veh. Technol. 70(1), 251–262 (2021)

    Article  Google Scholar 

  30. Zhang, J., Wang, H., Ma, M., Yu, M., Yazdani, A., Chen, L.: Active front steering-based electronic stability control for steer-by-wire vehicles via terminal sliding mode and extreme learning machine. IEEE Trans. Veh. Technol. 69(2), 14713–14726 (2020)

    Article  Google Scholar 

  31. Zhang, J., Wang, H., Zheng, J., Cao, Z., Man, Z., Yu, M., Chen, L.: Adaptive sliding mode-based lateral stability control of steer-by-wire vehicles with experimental validations. IEEE Trans. Veh. Technol. 69(9), 9589–9600 (2020)

    Article  Google Scholar 

  32. Hu, Y., Wang, H.: Robust tracking control for vehicle electronic throttle using adaptive dynamic sliding mode and extended state observer. Mech. Syst. Signal Process. 135, 1–18 (2020)

    Article  Google Scholar 

  33. Richard, S., Horn, M.: Stability proof for a well-established super-twisting parameter setting. Automatica 84, 241–243 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  34. Xu, Q.: Discrete-time integral terminal sliding mode control of a precision micro-motion system. In: 2015 International Workshop on Recent Advances in Sliding Modes (RASM), pp. 1–6. IEEE, Istanbul (2015)

  35. Chen, L., Wang, H., Huang, Y., Ping, Z., Yu, M., Zheng, X., Ye, M., Hu, Y.: Robust hierarchical sliding mode control of a two-wheeled self-balancing vehicle using perturbation estimation. Mech. Syst. Signal Process. 139, 1–19 (2020)

    Google Scholar 

  36. Su, W.C., Drakunov, S.V., Ozguner, U.: An O(T2) boundary layer in sliding mode for sampled-data systems. IEEE Trans. Autom. Control 45(3), 482–485 (2000)

    Article  MATH  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the Editor and anonymous reviewers for their helpful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hai Wang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ye, M., Wang, H., Yazdani, A. et al. Discrete-time integral terminal sliding mode-based speed tracking control for a robotic fish. Nonlinear Dyn 105, 359–370 (2021). https://doi.org/10.1007/s11071-021-06591-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-021-06591-0

Keywords

Navigation