Skip to main content
Log in

Fast and Accurate Computation of 3D Charlier Moment Invariants for 3D Image Classification

  • Published:
Circuits, Systems, and Signal Processing Aims and scope Submit manuscript

Abstract

The problem of 3D digital object invariability is encountered in image processing, especially in pattern classification/recognition. The 3D object should be correctly recognized regardless of its particular position and orientation in the scene. This paper proposes a new method to extract 3D Charlier moment invariants to translation and scaling (3DCMITS). These descriptors are extracted directly from discrete orthogonal Charlier polynomials without using 3D geometric moment invariants. This method is fast and does not require any numerical approximation compared to the indirect method based on 3D geometric moment invariants. The results show the proposed method's effectiveness in terms of speed with an improvement exceeding 99,97%. For validation purposes and as an illustration of the interest of 3DCMITS, this paper offers a classification system for 3D objects based on the proposed 3DCMITS and Support Vector Machine (SVM) classifier. The obtained results are verified with K-Nearest Neighbor (KNN) classifier and other existing works in the literature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data Availability

The datasets generated in our experiments are available from McGill 3D Shape Benchmark images Database, URL link: http://www.cim.mcgill.ca/~shape/benchMark/airplane.html. (2017). Accessed 9 March 2020. The datasets used or analyzed during the current study are available from the corresponding author on reasonable request.

Abbreviations

CPs :

Charlier Polynomials

3DCMs :

3D Charlier Moments

3DCMIT :

3D Charlier Moment Invariants to Translation

3DCMIS :

3D Charlier Moment Invariants to Scaling

3DCMITS :

3D Charlier Moment Invariants to Translation and Scaling

MSE :

Mean Square Error

3DMRI :

3D Magnetic Resonance Image

ETIR :

Execution Time Improvement Ratio

SVM :

Support Vector Machine

KNN :

K-Nearest Neighbor

CRP :

Correct Recognition Percentage

References

  1. R. Benouini et al., Efficient 3D object classification by using direct Krawtchouk moment invariants. Multimed. Tools Appl. 77(20), 27517–27542 (2018)

    Article  Google Scholar 

  2. T.J. Bin et al., Subpixel edge location based on orthogonal Fourier-Mellin moments. Image Vis. Comput. 26(4), 563–569 (2008)

    Article  Google Scholar 

  3. C.-W. Chong et al., Translation and scale invariants of Legendre moments. Pattern Recognit. 37(1), 119–129 (2004)

    Article  Google Scholar 

  4. L. Comtet, Advanced Combinatorics: The Art of Finite and Infinite Expansions (Springer Science & Business Media, 2012)

    Google Scholar 

  5. O. El ogri et al., 2D and 3D medical image analysis by discrete orthogonal moments. Procedia Comput. Sci. 148, 428–437 (2019)

    Article  Google Scholar 

  6. A. Daoui et al., Stable computation of higher order Charlier moments for signal and image reconstruction. Inf. Sci. 521, 251–276 (2020). https://doi.org/10.1016/j.ins.2020.02.019

    Article  MATH  Google Scholar 

  7. M. El Mallahi et al., Translation and scale invariants of three-dimensional Tchebichef moments. in 2015 Intelligent Systems and Computer Vision (ISCV) (IEEE, 2015), p. 1–5

  8. O. El. Ogri et al., New set of fractional-order generalized Laguerre moment invariants for pattern recognition. Multimed. Tools Appl. 79, 23261–23294 (2020)

    Article  Google Scholar 

  9. S. Farokhi et al., Near infrared face recognition by combining Zernike moments and undecimated discrete wavelet transform. Digit. Signal Process. 31, 13–27 (2014)

    Article  Google Scholar 

  10. J. Flusser et al., 2D and 3D Image Analysis by Moments (Wiley, Hoboken, 2016)

    Book  Google Scholar 

  11. J. Flusser, T. Suk, Pattern recognition by affine moment invariants. Pattern Recognit. 26(1), 167–174 (1993)

    Article  MathSciNet  Google Scholar 

  12. X. Guo, Three dimensional moment invariants under rigid transformation. in International Conference on Computer Analysis of Images and Patterns (Springer, Berlin, Heidelberg, 1993), pp. 518–522

  13. K.M. Hosny, Exact and fast computation of geometric moments for gray level images. Appl. Math. Comput. 189(2), 1214–1222 (2007)

    MathSciNet  MATH  Google Scholar 

  14. K.M. Hosny, Fast and low-complexity method for exact computation of 3D Legendre moments. Pattern Recognit. Lett. 32(9), 1305–1314 (2011)

    Article  Google Scholar 

  15. K.M. Hosny, Fast computation of accurate Gaussian-Hermite moments for image processing applications. Digit. Signal Process. 22(3), 476–485 (2012)

    Article  MathSciNet  Google Scholar 

  16. H. Karmouni et al., Fast and stable computation of the Charlier moments and their inverses using digital filters and image block representation. Circuits Syst. Signal Process. 37(9), 4015–4033 (2018)

    Article  MathSciNet  Google Scholar 

  17. M.K. Hu, Visual pattern recognition by moment invariants. IRE Trans. Inf. Theory. 8(2), 179–187 (1962). https://doi.org/10.1109/TIT.1962.1057692

    Article  MATH  Google Scholar 

  18. R. Mukundan et al., Discrete vs. continuous orthogonal moments for image analysis (2001)

  19. R. Mukundan et al., Image analysis by Tchebichef moments. IEEE Trans. Image Process. 10(9), 1357–1364 (2001)

    Article  MathSciNet  Google Scholar 

  20. R. Mukundan and K.R. Ramakrishnan, Moment functions in image analysis: theory and applications. (World Scientific, 1998)

  21. A.F. Nikiforov et al., Classical orthogonal polynomials of a discrete variable, in Classical orthogonal polynomials of a discrete variable. (Springer, New York, 1991), pp. 18–54

    Chapter  Google Scholar 

  22. P.A. Oliveira et al., A discrete Tchebichef transform approximation for image and video coding. IEEE Signal Process. Lett. 22(8), 1137–1141 (2015)

    Article  Google Scholar 

  23. F.A. Sadjadi, E.L. Hall, Three-dimensional moment invariants. IEEE Trans. Pattern Anal. Mach. Intell. PAMI-2 2, 127–136 (1980). https://doi.org/10.1109/TPAMI.1980.4766990

    Article  MATH  Google Scholar 

  24. M. Sayyouri et al., A fast and accurate computation of 2D and 3D generalized Laguerre moments for images analysis. Multimed. Tools Appl. 80(5), 7887–7910 (2021)

    Article  Google Scholar 

  25. M. Sayyouri et al., A fast computation of novel set of Meixner invariant moments for image analysis. Circuits Syst. Signal Process. 34(3), 875–900 (2015)

    Article  Google Scholar 

  26. T. Suk, J. Flusser, Tensor method for constructing 3D moment invariants. in International Conference on Computer Analysis of Images and Patterns (Springer, 2011). pp. 212–219

  27. C. Wang et al., Image description with polar harmonic Fourier moments. IEEE Trans. Circuits Syst. Video Technol. 30(12), 4440–4452 (2019)

    Article  Google Scholar 

  28. C. Wang et al., Quaternion polar harmonic Fourier moments for color images. Inf. Sci. 450, 141–156 (2018)

    Article  MathSciNet  Google Scholar 

  29. C. Wang et al., Ternary radial harmonic Fourier moments based robust stereo image zero-watermarking algorithm. Inf. Sci. 470, 109–120 (2019)

    Article  Google Scholar 

  30. Z. Xia et al., Color medical image lossless watermarking using chaotic system and accurate quaternion polar harmonic transforms. Signal Process. 157, 108–118 (2019)

    Article  Google Scholar 

  31. Z. Xia et al., Geometrically invariant color medical image null-watermarking based on precise quaternion polar harmonic fourier moments. IEEE Access. 7, 122544–122560 (2019)

    Article  Google Scholar 

  32. B. Xiao et al., Radial shifted Legendre moments for image analysis and invariant image recognition. Image Vis. Comput. 32(12), 994–1006 (2014)

    Article  Google Scholar 

  33. D. Xu, H. Li, 3-D affine moment invariants generated by geometric primitives. in 18th International Conference on Pattern Recognition (ICPR’06) (IEEE, 2006). pp. 544–547

  34. D. Xu, H. Li, Geometric moment invariants. Pattern Recognit. 41(1), 240–249 (2008). https://doi.org/10.1016/j.patcog.2007.05.001

    Article  MATH  Google Scholar 

  35. S. Xu et al., Accurate Computation of Fractional-Order Exponential Moments. Secur. Commun. Netw. 2020, 1–6 (2020)

    Google Scholar 

  36. M. Yamni et al., Blind image zero-watermarking algorithm based on radial krawtchouk moments and chaotic system. in 2020 International Conference on Intelligent Systems and Computer Vision (ISCV) (IEEE, 2020). pp. 1–7

  37. M. Yamni et al., Color Stereo image zero-watermarking using quaternion radial tchebichef moments. in 2020 International Conference on Intelligent Systems and Computer Vision (ISCV) (IEEE, 2020). pp. 1–7

  38. M. Yamni et al., Fractional Charlier moments for image reconstruction and image watermarking. Signal Process. 171, 107509 (2020)

    Article  Google Scholar 

  39. M. Yamni et al., Image watermarking using separable fractional moments of Charlier-Meixner. J. Frankl. Inst. 358(4), 2535–2560 (2021). https://doi.org/10.1016/j.jfranklin.2021.01.011

    Article  MathSciNet  MATH  Google Scholar 

  40. M. Yamni et al., Novel Octonion Moments for color stereo image analysis. Digit. Signal Process. 108, 102878 (2021). https://doi.org/10.1016/j.dsp.2020.102878

    Article  Google Scholar 

  41. P.-T. Yap et al., Image analysis by Krawtchouk moments. IEEE Trans. Image Process. 12(11), 1367–1377 (2003)

    Article  MathSciNet  Google Scholar 

  42. R. Zhi et al., Translation and scale invariants of Krawtchouk moments. Inf. Process. Lett. 130, 30–35 (2018)

    Article  MathSciNet  Google Scholar 

  43. J. Zhou Jian et al., Image analysis by discrete orthogonal Hahn moments. in International Conference Image Analysis and Recognition (Springer, Berlin, Heidelberg, 2005). p. 524–531

  44. H. Zhu et al., Image analysis by discrete orthogonal Racah moments. Signal Process 87(4), 687–708 (2007)

    Article  Google Scholar 

  45. H. Zhu et al., Image description with nonseparable two-dimensional charlier and meixner moments. Int. J. Pattern Recognit. Artif. Intell. 25(01), 37–55 (2011). https://doi.org/10.1142/S0218001411008506

    Article  MathSciNet  Google Scholar 

  46. H. Zhsu et al., Translation and scale invariants of Tchebichef moments. Pattern Recognit. 40(9), 2530–2542 (2007)

    Article  Google Scholar 

  47. McGill 3D Shape Benchmark, http://www.cim.mcgill.ca/~shape/benchMark/, last accessed 2020/03/09

Download references

Acknowledgements

The authors would like to thank the anonymous referees for their helpful comments and suggestions.

Funding

No funding has been granted for this work.

Author information

Authors and Affiliations

Authors

Contributions

Category 1: Conception and design of study was performed by M. Y, H K. Acquisition of data was performed by Mohamed Yamni, H K, A D, O E ogri, M S, H Q. Analysis and/or interpretation of data was performed by M. Y, H. K, M. S, H. Q, M. M, B. A. Category 2: M. Y, H. K., A. D., O. E. ogri drafted the manuscript. M. Y, M. S, H. Q, M. M, B. A. revised the manuscript critically for important intellectual content. Category 3: M. Y, H. K, A. D, O E. ogri, M. S, H. Q, M. M, B. A. were responsible for the approval of the version of the manuscript to be published.

Corresponding author

Correspondence to M. Yamni.

Ethics declarations

Conflict of interests

The authors declare that we have no competing interests in the submission of this manuscript.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yamni, M., Daoui, A., El ogri, O. et al. Fast and Accurate Computation of 3D Charlier Moment Invariants for 3D Image Classification. Circuits Syst Signal Process 40, 6193–6223 (2021). https://doi.org/10.1007/s00034-021-01763-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00034-021-01763-0

Keywords

Navigation