Skip to main content
Log in

Aqueous tape casting of the 0.7Pb(Mg1/3Nb2/3)O3-0.3PbTiO3 ceramic films: Production optimization and properties

  • Published:
Journal of Electroceramics Aims and scope Submit manuscript

Abstract

The 0.7Pb(Mg1/3Nb2/3)O3-0.3PbTiO3 ceramic films were prepared using the water-based tape casting method. Two main components of the slurry are water and solids. The concentrations of other chemicals, the surfactant and binder, are at the level of 1 wt.%. Both binder and surfactant are eco-friendly polymers. Additional chemicals are not required. The optimal concentration of surfactant determined through viscosity measurements. The density of the ceramics was studied as a function of the concentration of water and binder. The density is nearly independent of amount of water despite a wide range of values of concentration. This independence is a powerful tool to cast using different techniques. The density substantially depends only on binder concentration. The polymers removal protocol of the cast films was optimized using thermogravimetric analysis. As a result, the translucent ceramic films with a relative density of 98% and thickness of 70 μm were prepared. The permittivity, remnant polarization and pyrocurrent measurements, along with the scanning electron microscopy, prove the high density of the ceramics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data Availability

Data sharing not applicable to this article as all raw data were generated by the authors.

References

  1. L.P. Meier, L. Urech, L.J. Gauckler, J. Eur. Ceram. Soc. 24(15-16), 3753 (2004)

    Article  CAS  Google Scholar 

  2. M. Zhang, Z. Huang, J. Cheng, O. Yamamoto, N. Imanishi, B. Chi, J. Pu, J. Li, J. Alloys Compd. 590, 147 (2014)

    Article  CAS  Google Scholar 

  3. J.H. Song, S.I. Park, J.H. Lee, H.S. Kim, J. Mater. Process. Technol. 198(1-3), 414 (2008)

    Article  CAS  Google Scholar 

  4. Z. Wang, J. Qian, J. Cao, S. Wang, T. Wen, J. Alloys Compd. 437(1-2), 264 (2007)

    Article  CAS  Google Scholar 

  5. R. Belon, R. Boulesteix, P.M. Geffroy, A. Maître, C. Sallé, T. Chartier, J. Eur. Ceram. Soc. 39(6), 2161 (2019)

    Article  CAS  Google Scholar 

  6. M. Liu, Y. Liu, Int. J. Hydrogen Energy. 44(31), 16976 (2019)

    Article  CAS  Google Scholar 

  7. H. Zhao, F. Tang, Y. Xie, Z. Wen, K. Tian, X. Nie, Y. Cao, D. Tang, Int. J. Appl. Ceram. Technol. 17(3), 1255 (2020)

    Article  CAS  Google Scholar 

  8. Z. Jingxian, J. Dongliang, L. Weisensel, P. Greil, J. Eur. Ceram. Soc. 24(1), 147 (2004)

    Article  CAS  Google Scholar 

  9. J. Blum, W. Cannon, MRS Online Proceedings Library Archive, 40 (1984)

  10. C. Fiori, G. De Portu, in . Br. Ceram. Proc., Vol. 38, (1986), pp. 213–225

  11. M. Ding, Y. Shi, J. Xie, D. Zhou, Y. Wang, F. Lei, L. Zhang, Int. J. Appl. Ceram. Technol. 17(1), 285 (2020)

    Article  CAS  Google Scholar 

  12. D. Hotza, P. Greil, Materials Science and Engineering: A. 202(1-2), 206 (1995)

    Article  Google Scholar 

  13. D. Hotza, R.K. Nishihora, R.A. Machado, P.M. Geffroy, T. Chartier, S. Bernard, Int J Ceramic Eng Sci. 1(1), 21 (2019)

    Article  CAS  Google Scholar 

  14. R.K. Nishihora, P.L. Rachadel, M.G.N. Quadri, D. Hotza, J. Eur. Ceram. Soc. 38 (4), 988 (2018)

    Article  CAS  Google Scholar 

  15. H. Jantunen, T. Hu, A. Uusimäki, S. Leppävuori, J. Eur. Ceram. Soc. 24(6), 1077 (2004)

    Article  CAS  Google Scholar 

  16. R.A. Malik, J.K. Kang, A. Hussain, C.W. Ahn, H.S. Han, J.S. Lee, Appl. Phys. Express. 7(6), 061502 (2014)

    Article  CAS  Google Scholar 

  17. Z. Yuping, J. Dongliang, P. Greil, J. Eur. Ceram. Soc. 20(11), 1691 (2000)

    Article  CAS  Google Scholar 

  18. A. Jan, H. Liu, H. Hao, Z. Yao, M. Cao, S.A. Arbab, M. Tahir, M. Appiah, A. Ullah, M. Emmanuel, et al., J. Mater. Chem. C (2020)

  19. Y. Sun, K. Zeng, T. Li, Science China Physics, Mechanics & Astronomy. 63(7), 1 (2020)

    Article  CAS  Google Scholar 

  20. J.J. Choi, J.H. Lee, B.D. Hahn, W.H. Yoon, D.S. Park, Mater. Res. Bull. 43(2), 483 (2008)

    Article  CAS  Google Scholar 

  21. R. Liang, Q.M. Wang, Sensors Actuators A Phys. 235, 317 (2015)

    Article  CAS  Google Scholar 

  22. K. Prabhakaran, E.M. Jayasingh, S. Raghunath, C. Durgaprasad, S. Sharma, J. Mater. Process. Technol. 209(8), 4217 (2009)

    Article  CAS  Google Scholar 

  23. W. Santa-Rosa, M. Venet, J.C. M’Peko, R. Moreno, H. Amorín, M. Algueró, J. Eur. Ceram. Soc. 39(4), 1065 (2019)

    Article  CAS  Google Scholar 

  24. R.J.N. Quintero, S. Guillemet, J.A. Aguilar-Garib, M.E.R. Melo, B. Durand, J. Ceramic Process.Res. 13(2), 101 (2012)

    Google Scholar 

  25. K. Nagata, Ceram. Trans. 22, 335 (1991)

    CAS  Google Scholar 

  26. K. Nagata, Forming and technology for ceramics (1992)

  27. B.P. Kumar, H. Kumar, D. Kharat, Mater. Sci. Eng. B. 127(2-3), 130 (2006)

    Article  CAS  Google Scholar 

  28. T. Zeng, X. Dong, C. Mao, Z. Zhou, H. Yang, J. Eur. Ceram. Soc. 27(4), 2025 (2007)

    Article  CAS  Google Scholar 

  29. Q. Jiang, L. Cross, J. Mater. Sci. 28(16), 4536 (1993)

    Article  CAS  Google Scholar 

  30. L. Saravanan, S. Subramanian, Colloids Surf. A Physicochem. Eng. Asp. 252(2-3), 175 (2005)

    Article  CAS  Google Scholar 

  31. J. Böhnlein-Mauß, W. Sigmund, G. Wegner, W.H. Meyer, F. Heßel, K. Seitz, A. Roosen, Adv. Mater. 4(2), 73 (1992)

    Article  Google Scholar 

  32. M. Yu, J. Zhang, X. Li, H. Liang, H. Zhong, Y. Li, Y. Duan, D.L. Jiang, X. Liu, Z. Huang, Ceram. Int. 41(10), 14845 (2015)

    Article  CAS  Google Scholar 

  33. M. Descamps, G. Moreau, M. Mascart, B. Thierry, J. Eur. Ceram. Soc. 13(3), 221 (1994)

    Article  CAS  Google Scholar 

  34. V. Vinothini, P. Singh, M. Balasubramanian, Proceedings of the international symposium of research students on material science and engineering (2004)

  35. P.M. Geffroy, T. Chartier, J.F. Silvain, Adv. Eng. Mater. 9(7), 547 (2007)

    Article  CAS  Google Scholar 

  36. S. Lüftl, B. Balluch, W. Smetana, S. Seidler, J. Therm. Anal. Calorim. 103(1), 157 (2011)

    Article  CAS  Google Scholar 

  37. P. Wiecinska, J. Therm. Anal. Calorim. 123(2), 1419 (2016)

    Article  CAS  Google Scholar 

  38. M. Razzak, S. Dewi, H. Lely, E. Taty, et al., Radiat. Phys. Chem. 55(2), 153 (1999)

    Article  CAS  Google Scholar 

  39. M. Zheng, M. Gu, Y. Jin, G. Jin, Mater. Sci. Eng. B. 77(1), 55 (2000)

    Article  Google Scholar 

  40. R.K. PP, S. Vijayan, P. Wilson, P.A. Kumar, K. Prabhakaran, Ceram. Int. 45 (15), 18543 (2019)

    Article  CAS  Google Scholar 

  41. O. Noblanc, P. Gaucher, G. Calvarin, J. Appl. Phys. 79(8), 4291 (1996)

    Article  Google Scholar 

  42. R. Wongmaneerung, A. Rittidech, O. Khamman, R. Yimnirun, S. Ananta, Ceram. Int. 35(1), 125 (2009)

    Article  CAS  Google Scholar 

  43. K.P. Chen, C. Li, X. Zhang, Y. Huang, Mater. Lett. 57(1), 20 (2002)

    Article  CAS  Google Scholar 

  44. T.R. Shrout, Z.P. Chang, N. Kim, S. Markgraf, Ferroelectrics Letters Section. 12(3), 63 (1990)

    Article  CAS  Google Scholar 

  45. B. Noheda, D. Cox, G. Shirane, R. Guo, B. Jones, L. Cross, Phys. Rev. B. 63 (1), 014103 (2000)

    Article  CAS  Google Scholar 

  46. X. Zhao, J. Wang, Z. Peng, K.H. Chew, H. Chan, C. Choy, H. Luo, Physica B: Condensed Matter. 339(2-3), 68 (2003)

    Article  CAS  Google Scholar 

  47. S. Choi, T.R. Shrout, S. Jang, A. Bhalla, Mater. Lett. 8(6-7), 253 (1989)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This project has received funding from the Research Council of Lithuania (LMTLT), agreement No S-LLT-20-4.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Artyom Plyushch.

Ethics declarations

Conflict of Interests

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kudrevičius, T., Plyushch, A., Ivanov, M. et al. Aqueous tape casting of the 0.7Pb(Mg1/3Nb2/3)O3-0.3PbTiO3 ceramic films: Production optimization and properties. J Electroceram 46, 20–25 (2021). https://doi.org/10.1007/s10832-021-00240-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10832-021-00240-z

Keywords

Navigation