Skip to main content
Log in

Sources, chemistry, bioremediation and social aspects of arsenic-contaminated waters: a review

  • Review
  • Published:
Environmental Chemistry Letters Aims and scope Submit manuscript

Abstract

Arsenic-contaminated water is a major concern in many areas worldwide, causing several diseases such as cancer. There is therefore a need for advanced methods to clean waters because conventional methods have drawbacks such as generation of hazardous sludge, heavy operation and high costs. Here we review arsenic sources, chemistry, toxicity and remediation methods. We discuss also sociological aspects of arsenic prevention. Sources include surface water, groundwater and seawater. Methods include bioremediation, phyto-remediation and biofilters. Sociological aspects are public awareness, sharing information on arsenic-free water sources, removing As at the household level, building a community plant and training facilitators.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

ADT:

Adenosine triphosphate

H2AsO4 :

Arsenic sulfide

CAS:

Autotroph specie

BA:

Bioaccumulation

US-EPA:

Environment Protection Agency of USA

IARC:

International Agency for Research on Cancer

MBR:

Membrane bioreactor

RO:

Reverse osmosis

RP:

Redox potential

WHO:

World Health Organization

References

  • Abdallah R, Ali DB, Jawad H, Abdulhameed AS, Rizwan M (2021b) Synthesis of Schiff’s base magnetic crosslinked chitosan-glyoxal/ZnO/Fe3O4 nanoparticles for enhanced adsorption of organic dye: Modeling and mechanism study. Sustain Chem Pharm 20:100379

    Article  Google Scholar 

  • Abdallah R, Barkata D, Jawad AH, Abdulhameed AS, Al-Kahtanie AA, AL-Othman ZA (2021a) Parametric optimization by Box-Behnken design for synthesis of magnetic chitosan-benzil/ZnO/Fe3O4 nanocomposite and textile dye removal. J Environ Chem Eng 9(3):105166

    Article  CAS  Google Scholar 

  • Achour AR, Bauda P, Billard P (2007) Diversity of arsenite transporter genes from arsenic-resistant soil bacteria. Res Microbiol 158(2):128–137

    Article  CAS  Google Scholar 

  • Adeyemi AO (2009) Bioaccumulation of arsenic by fungi. Am J Environ Sci 5(3):364–370

    Article  CAS  Google Scholar 

  • Agency, UEP (2003) "Arsenic treatment technology evaluation handbook for small systems"

  • Ahmad J, Goldar B, Misra S (2005) Value of arsenic-free drinking water to rural households in Bangladesh. J Environ Manage 74(2):173–185

    Article  CAS  Google Scholar 

  • Aksoy N, Şimşek C, Gunduz O (2009) Groundwater contamination mechanism in a geothermal field: a case study of Balcova, Turkey. J Contam Hydrol 103(1–2):13–28

    Article  CAS  Google Scholar 

  • Akter KF, Owens G, Davey DE, Naidu R (2005) Arsenic speciation and toxicity in biological systems Reviews of environmental contamination and toxicology. Springer, Berlin

    Google Scholar 

  • Amen R, Bashir H, Bibi I, Shaheen SM, Niazi NK, Shahid M, Hussain MM, Antoniadis V, Shakoor MB, Alsolaimani SG (2020a) A critical review on arsenic removal from water using biochar-based sorbents The significance of modification and redox reactions. Chem Eng J 396:125195

    Article  CAS  Google Scholar 

  • Amin MN, Kaneco S, Kitagawa T, Begum A, Katsumata H, Suzuki T, Ohta K (2006) Removal of arsenic in aqueous solutions by adsorption onto waste rice husk. Ind Eng Chem Res 45(24):8105–8110

    Article  CAS  Google Scholar 

  • Amirtharajah A, O'melia CR (1990) Coagulation processes: destabilization, mixing, and flocculation. MCGRAW-HILL, INC.,(USA). 1194: 1990

  • Andreoni V, Zanchi R, Cavalca L, Corsini A, Romagnoli C, Canzi E (2012) Arsenite oxidation in Ancylobacter dichloromethanicus As3-1b strain: detection of genes involved in arsenite oxidation and CO 2 fixation. Curr Microbiol 65(2):212–218

    Article  CAS  Google Scholar 

  • Anirudhan T, Unnithan MR (2007) Arsenic (V) removal from aqueous solutions using an anion exchanger derived from coconut coir pith and its recovery. Chemosphere 66(1):60–66

    Article  CAS  Google Scholar 

  • Arai Y, Sparks D, Davis J (2005) Arsenate adsorption mechanisms at the allophane− water interface. Environ Sci Technol 39(8):2537–2544

    Article  CAS  Google Scholar 

  • Arain M, Kazi T, Baig J, Jamali M, Afridi H, Shah A, Jalbani N, Sarfraz R (2009) Determination of arsenic levels in lake water, sediment, and foodstuff from selected area of Sindh, Pakistan: estimation of daily dietary intake. Food Chem Toxicol 47(1):242–248

    Article  CAS  Google Scholar 

  • Arif S, Hira Saqib M, Mubashir SI, Malik AM, Saqib S, Ullah S, Show PL (2021) Comparison of Nigella sativa and Trachyspermum ammi via experimental investigation and biotechnological potential. Chem Eng Process-Process Intensif. 161:108313

    Article  CAS  Google Scholar 

  • Aslam A, Ibrahim M, Mahmood A, Mubashir M, Sipra HFK, Shahid I, Ramzan S, Latif MT, Tahir MY, Show PL (2021) Mitigation of particulate matters and integrated approach for carbon mono-oxide remediation in an urban environment. J Environ Chem Eng. https://doi.org/10.1016/j.jece.2021.105546

    Article  Google Scholar 

  • Azcue JM, Mudroch A, Rosa F, Hall G (1994) Effects of abandoned gold mine tailings on the arsenic concentrations in water and sediments of Jack of Clubs Lake, BC. Environ Technol 15(7):669–678

    Article  CAS  Google Scholar 

  • Azcue J, Mudroch A, Rosa F, Hall G, Jackson T, Reynoldson T (1995) Trace elements in water, sediments, porewater, and biota polluted by tailings from an abandoned gold mine in British Columbia, Canada. J Geochem Explor 52(1–2):25–34

    Article  CAS  Google Scholar 

  • Bachate SP, Khapare RM, Kodam KM (2012) Oxidation of arsenite by two β-proteobacteria isolated from soil. Appl Microbiol Biotechnol 93(5):2135–2145

    Article  CAS  Google Scholar 

  • Baciocchi R, Chiavola A, Gavasci R (2005) Ion exchange equilibria of arsenic in the presence of high sulphate and nitrate concentrations. Water Sci Technol Water Supply 5(5):67–74

    Article  CAS  Google Scholar 

  • Baes AU, Okuda T, Nishijima W, Shoto E, Okada M (1997) Adsorption and ion exchange of some groundwater anion contaminants in an amine modified coconut coir. Water Sci Technol 35(7):89–95

    Article  CAS  Google Scholar 

  • Bahar MM, Megharaj M, Naidu R (2012) Arsenic bioremediation potential of a new arsenite-oxidizing bacterium Stenotrophomonas sp. MM-7 isolated from soil. Biodegradation 23(6):803–812

    Article  CAS  Google Scholar 

  • Bahar MM, Megharaj M, Naidu R (2013) Bioremediation of arsenic-contaminated water: recent advances and future prospects. Water Air Soil Pollut 224(12):1722

    Article  CAS  Google Scholar 

  • Bahar MM, Megharaj M, Naidu R (2013) Toxicity, transformation and accumulation of inorganic arsenic species in a microalga Scenedesmus sp. isolated from soil. J Appl Phycol 25(3):913–917

    Article  CAS  Google Scholar 

  • Bajpai S, Chaudhuri M (1999) Removal of arsenic from ground water by manganese dioxide–coated sand. J Environ Eng 125(8):782–784

    Article  CAS  Google Scholar 

  • Balasubramanian N, Madhavan K (2001) Arsenic removal from industrial effluent through electrocoagulation. Chem Eng Technol Ind Chem-Plant Equip-Process Eng-Biotechnol 24(5):519–521

    CAS  Google Scholar 

  • Ballinas MdLE, Rodríguez E, de San Miguel MTDJ, Rodríguez OS, Muñoz M, De Gyves J (2004) Arsenic (V) removal with polymer inclusion membranes from sulfuric acid media using DBBP as carrier. Environ Sci Technol 38(3):886–891

    Article  CAS  Google Scholar 

  • Banerjee S, Datta S, Chattyopadhyay D, Sarkar PJJoES, Health PA (2011) Arsenic accumulating and transforming bacteria isolated from contaminated soil for potential use in bioremediation. J Environ Sci Health 46(14):1736–1747

    Article  CAS  Google Scholar 

  • Banerjee S, Majumdar J, Samal AC, Bhattachariya P, Santra SC (2013) Biotransformation and bioaccumulation of arsenic by Brevibacillus brevis isolated from arsenic contaminated region of West Bengal. IOSR J Environ Sci Toxicol Food Technol 3(1):1–10

    Article  CAS  Google Scholar 

  • Barats A, Féraud G, Potot C, Philippini V, Travi Y, Durrieu G, Dubar M, Simler R (2014) Naturally dissolved arsenic concentrations in the Alpine/Mediterranean Var River watershed (France). Sci Total Environ 473:422–436

    Article  CAS  Google Scholar 

  • Barrer RM (1978) Zeolites and clay minerals as sorbents and molecular sieves. Academic Press, London-New York

  • Barringer JL, Szabo Z, Wilson TP, Bonin JL, Kratzer T, Cenno K, Romagna T, Alebus M, Hirst B (2011) Distribution and seasonal dynamics of arsenic in a shallow lake in northwestern New Jersey, USA. Environ Geochem Health 33(1):1–22

    Article  CAS  Google Scholar 

  • Battaglia-Brunet F, Dictor MC, Garrido F, Crouzet C, Morin D, Dekeyser K, Clarens M, Baranger P (2002) An arsenic (III)-oxidizing bacterial population: selection, characterization, and performance in reactors. J Appl Microbiol 93(4):656–667

    Article  CAS  Google Scholar 

  • Battaglia-Brunet F, Joulian C, Garrido F, Dictor M-C, Morin D, Coupland K, Johnson DB, Hallberg KB, Baranger P (2006) Oxidation of arsenite by Thiomonas strains and characterization of Thiomonas arsenivorans sp. nov. Antonie Van Leeuwenhoek 89(1):99–108

    Article  CAS  Google Scholar 

  • Beceiro-Gonzalez E, Taboada-de la Calzada A, Alonso-Rodrıguez E, López-Mahıa P, Muniategui-Lorenzo S, Prada-Rodrıguez D (2000) Interaction between metallic species and biological substrates: approximation to possible interaction mechanisms between the alga Chlorella vulgaris and arsenic (III). TrAC, Trends Anal Chem 19(8):475–480

    Article  CAS  Google Scholar 

  • Bekkum HV, Jansen J, Flanigen E (1991) Introduction to zeolite science and practice

  • Benefield LD, Morgan JM (1990) Chemical precipitation. MCGRAW-HILL, INC.,(USA) 1194: 1990

  • Bentley R, Chasteen TG (2002) Microbial methylation of metalloids: arsenic, antimony, and bismuth. Microbiol Mol Biol Rev 66(2):250–271

    Article  CAS  Google Scholar 

  • Bhattacharya P, Welch AH, Stollenwerk KG, McLaughlin MJ, Bundschuh J, Panaullah G (2007) Arsenic in the environment: biology and chemistry. Elsevier

    Google Scholar 

  • Bissen M, Frimmel FH (2003) Arsenic—a review. Part II: oxidation of arsenic and its removal in water treatment. Acta Hydrochim Hydrobiol 31(2):97–107

    Article  CAS  Google Scholar 

  • Blum JS, Bindi AB, Buzzelli J, Stolz JF, Oremland RS (1998) Bacillus arsenicoselenatis, sp. nov., and Bacillus selenitireducens, sp. nov.: two haloalkaliphiles from Mono Lake, California that respire oxyanions of selenium and arsenic. Arch Microbiol 171(1):19–30

    Article  CAS  Google Scholar 

  • Borho M, Wilderer P (1996) Optimized removal of arsenate (III) by adaptation of oxidation and precipitation processes to the filtration step. Water Sci Technol 34(9):25–31

    Article  CAS  Google Scholar 

  • Bostick BC, Fendorf S, Manning BA (2003) Arsenite adsorption on galena (PbS) and sphalerite (ZnS). Geochim Cosmochim Acta 67(5):895–907

    Article  CAS  Google Scholar 

  • Campos V, Escalante G, Yañez J, Zaror C, Mondaca M (2009) Isolation of arsenite-oxidizing bacteria from a natural biofilm associated to volcanic rocks of Atacama Desert, Chile. J Basic Microbiol 49(S1):S93–S97

    Article  Google Scholar 

  • Campos VL, Valenzuela C, Yarza P, Kämpfer P, Vidal R, Zaror C, Mondaca M-A, Lopez-Lopez A, Rosselló-Móra R (2010) Pseudomonas arsenicoxydans sp nov., an arsenite-oxidizing strain isolated from the Atacama desert. Syst Appl Microbiol 33(4):193–197

    Article  CAS  Google Scholar 

  • Chai WS, Cheun JY, Senthil Kumar P, Mubashir M, Majeed Z, Banat F, Ho S-H, Show PL (2021) A review on conventional and novel materials towards heavy metal adsorption in wastewater treatment application. J Clean Prod 296:126589

    Article  CAS  Google Scholar 

  • Chakravarty S, Dureja V, Bhattacharyya G, Maity S, Bhattacharjee S (2002) Removal of arsenic from groundwater using low cost ferruginous manganese ore. Water Res 36(3):625–632

    Article  CAS  Google Scholar 

  • Challenger F (1945) Biological methylation. Chem Rev 36(3):315–361

    Article  CAS  Google Scholar 

  • Chang J-S, Yoon I-H, Lee J-H, Kim K-R, An J, Kim K-W (2010) Arsenic detoxification potential of aox genes in arsenite-oxidizing bacteria isolated from natural and constructed wetlands in the Republic of Korea. Environ Geochem Health 32(2):95–105

    Article  CAS  Google Scholar 

  • Cheng RC, Liang S, Wang HC, Beuhler MD (1994) Enhanced coagulation for arsenic removal. J Am Water Works Ass 86(9):79–90

    Article  CAS  Google Scholar 

  • Chojnacka K (2010) Biosorption and bioaccumulation–the prospects for practical applications. Environ Int 36(3):299–307

    Article  CAS  Google Scholar 

  • Choong TS, Chuah T, Robiah Y, Koay FG, Azni I (2007) Arsenic toxicity, health hazards and removal techniques from water: an overview. Desalination 217(1–3):139–166

    Article  CAS  Google Scholar 

  • Chowdhury R, Sen AK, Karak P, Chatterjee R, Giri AK, Chaudhuri K (2009) Isolation and characterization of an arsenic-resistant bacterium from a bore-well in West Bengal, India. Annal Microbiol 59(2):253–258

    Article  CAS  Google Scholar 

  • Chung J, Li X, Rittmann BE (2006) Bio-reduction of arsenate using a hydrogen-based membrane biofilm reactor. Chemosphere 65(1):24–34

    Article  CAS  Google Scholar 

  • Clifford DA (1990) Ion exchange and inorganic adsorption. MCGRAW-HILL, INC.,(USA) 1194: 1990

  • Cullen WR, Reimer KJ (1989) Arsenic speciation in the environment. Chem Rev 89(4):713–764

    Article  CAS  Google Scholar 

  • Cánovas D, Vooijs R, Schat H, de Lorenzo V (2004) The role of thiol species in the hypertolerance of Aspergillus sp. P37 to arsenic. J Biol Chem 279(49):51234–51240

    Article  CAS  Google Scholar 

  • Čerňanský S, Urík M, Ševc J, Khun M (2007) Biosorption and biovolatilization of arsenic by heat-resistant fungi (5 pp). Environ Sci Pollut Res 14(1):31–35

    Article  CAS  Google Scholar 

  • Dastidar A, Wang Y-T (2009) Arsenite oxidation by batch cultures of Thiomonas arsenivorans strain b6. J Environ Eng 135(8):708–715

    Article  CAS  Google Scholar 

  • Demirbas A (2008) Heavy metal adsorption onto agro-based waste materials: a review. J Hazard Mater 157(2–3):220–229

    Article  CAS  Google Scholar 

  • Diamadopoulos E, Ioannidis S, Sakellaropoulos GP (1993) As (V) removal from aqueous solutions by fly ash. Water Res 27(12):1773–1777

    Article  CAS  Google Scholar 

  • Dobrevski I, Nevov V, Kamenski D (1986) Ion exchange resins of increased selectivity towards arsenic. Environ Prot Eng 12(3):79–87

    CAS  Google Scholar 

  • Doušová B, Grygar T, Martaus A, Fuitová L, Koloušek D, Machovič V (2006) Sorption of AsV on aluminosilicates treated with FeII nanoparticles. J Colloid Interface Sci 302(2):424–431

    Article  CAS  Google Scholar 

  • Duan M, Wang Y, Xie X, Su C, Li J (2013) Arsenite oxidizing bacterium isolated from high arsenic groundwater aquifers from Datong Basin, Northern China. Procedia Earth and Planet Sci 7:232–235

    Article  CAS  Google Scholar 

  • Duquesne K, Lieutaud A, Ratouchniak J, Muller D, Lett MC, Bonnefoy V (2008) Arsenite oxidation by a chemoautotrophic moderately acidophilic Thiomonas sp.: from the strain isolation to the gene study. Environ Microbiol 10(1):228–237

    CAS  Google Scholar 

  • Dutta PK, Pehkonen S, Sharma VK, Ray AK (2005) Photocatalytic oxidation of arsenic (III): evidence of hydroxyl radicals. Environ Sci Technol 39(6):1827–1834

    Article  CAS  Google Scholar 

  • Dyer A (1988) An introduction to zeolite molecular sieves. United States: N. p., 1988. Web

  • Edvantoro BB, Naidu R, Megharaj M, Merrington G, Singleton I (2004) Microbial formation of volatile arsenic in cattle dip site soils contaminated with arsenic and DDT. Appl Soil Ecol 25(3):207–217

    Article  Google Scholar 

  • Edwards M (1994) Chemistry of arsenic removal during coagulation and Fe–Mn oxidation. J Am Water Works Ass 86(9):64–78

    Article  CAS  Google Scholar 

  • Elizalde-González M, Mattusch J, Einicke W-D, Wennrich R (2001) Sorption on natural solids for arsenic removal. Chem Eng J 81(1–3):187–195

    Article  Google Scholar 

  • Favas PJ, Pratas J, Prasad M (2012) Accumulation of arsenic by aquatic plants in large-scale field conditions: opportunities for phytoremediation and bioindication. Sci Total Environ 433:390–397

    Article  CAS  Google Scholar 

  • Fox KR (1989) Field experience with point-of-use treatment systems for arsenic removal. J Am Water Works Ass 81(2):94–101

    Article  CAS  Google Scholar 

  • Gan Y, Wang Y, Duan Y, Deng Y, Guo X, Ding X (2014) Hydrogeochemistry and arsenic contamination of groundwater in the Jianghan Plain, central China. J Geochem Explor 138:81–93

    Article  CAS  Google Scholar 

  • Garcia-Dominguez E, Mumford A, Rhine ED, Paschal A, Young LY (2008) Novel autotrophic arsenite-oxidizing bacteria isolated from soil and sediments. FEMS Microbiol Ecol 66(2):401–410

    Article  CAS  Google Scholar 

  • Ghimire KN, Inoue K, Makino K, Miyajima T (2002) Adsorptive removal of arsenic using orange juice residue. Sep Sci Technol 37(12):2785–2799

    Article  CAS  Google Scholar 

  • Ghimire KN, Inoue K, Yamaguchi H, Makino K, Miyajima T (2003) Adsorptive separation of arsenate and arsenite anions from aqueous medium by using orange waste. Water Res 37(20):4945–4953

    Article  CAS  Google Scholar 

  • Ghosh MM, Yuan JR (1987) Adsorption of inorganic arsenic and organoarsenicals on hydrous oxides. Environ Prog 6(3):150–157

    Article  CAS  Google Scholar 

  • Ghosh B, Das M, Gangopadhyay A, Das T, Singh K, Lal S, Mitra S, Ansari S, Goswami T, Chakraborty S (2003) Removal of arsenic from water by coagulation treatment using iron and magnesium salt. Indian J Chem Tech 10:87–95

  • Gihring TM, Banfield JF (2001) Arsenite oxidation and arsenate respiration by a new Thermus isolate. FEMS Microbiol Lett 204(2):335–340

    Article  CAS  Google Scholar 

  • Gihring TM, Druschel GK, McCleskey RB, Hamers RJ, Banfield JF (2001) Rapid arsenite oxidation by Thermus aquaticus and Thermus thermophilus: field and laboratory investigations. Environ Sci Technol 35(19):3857–3862

    Article  CAS  Google Scholar 

  • Giles DE, Mohapatra M, Issa TB, Anand S, Singh P (2011) Iron and aluminium based adsorption strategies for removing arsenic from water. J Environ Manag 92(12):3011–3022

    Article  CAS  Google Scholar 

  • Gillman G (2006) A simple technology for arsenic removal from drinking water using hydrotalcite. Sci Total Environ 366(2–3):926–931

    Article  CAS  Google Scholar 

  • Goldberg S (1986) Chemical modeling of arsenate adsorption on aluminum and iron oxide minerals. Soil Sci Soc Am J 50(5):1154–1157

    Article  CAS  Google Scholar 

  • Goldberg S (2002) Competitive adsorption of arsenate and arsenite on oxides and clay minerals. Soil Sci Soc Am J 66(2):413–421

    Article  CAS  Google Scholar 

  • Green H (1918) Description of a bacterium which oxidizes arsenite to arsenate, and of one which reduces arsenate to arsenite, isolated from a cattle-dipping Etank. South Afr J Sci 14:465–467

    CAS  Google Scholar 

  • Greenwood NN, Earnshaw A (2012) Chemistry of the elements. Elsevier

    Google Scholar 

  • Guo P, Gong Y, Wang C, Liu X, Liu J (2011) Arsenic speciation and effect of arsenate inhibition in a Microcystis aeruginosa culture medium under different phosphate regimes. Environ Toxicol Chem 30(8):1754–1759

    Article  CAS  Google Scholar 

  • Gupta V, Saini V, Jain N (2005) Adsorption of As (III) from aqueous solutions by iron oxide-coated sand. J Colloid Interface Sci 288(1):55–60

    Article  CAS  Google Scholar 

  • Han B, Runnells T, Zimbron J, Wickramasinghe R (2002) Arsenic removal from drinking water by flocculation and microfiltration. Desalination 145(1):293–298

    Article  CAS  Google Scholar 

  • Hansen HK, Núñez P, Grandon R (2006) Electrocoagulation as a remediation tool for wastewaters containing arsenic. Miner Eng 19(5):521–524

    Article  CAS  Google Scholar 

  • Hassan KM, Fukuhara T, Hai FI, Bari QH, Islam KMS (2009) Development of a bio-physicochemical technique for arsenic removal from groundwater. Desalination 249(1):224–229

    Article  CAS  Google Scholar 

  • Hering JG, Chen P-Y, Wilkie JA, Elimelech M (1997) Arsenic removal from drinking water during coagulation. J Environ Eng 123(8):800–807

    Article  CAS  Google Scholar 

  • Hering JG, Chen PY, Wilkie JA, Elimelech M, Liang S (1996) Arsenic removal by ferric chloride. J Am Water Works Ass 88(4):155–167

    Article  CAS  Google Scholar 

  • Hiller E, Lalinská B, Chovan M, Jurkovič Ľ, Klimko T, Jankulár M, Hovorič R, Šottník P, Fľaková R, Ženišová Z (2012) Arsenic and antimony contamination of waters, stream sediments and soils in the vicinity of abandoned antimony mines in the Western Carpathians, Slovakia. Appl Geochem 27(3):598–614

    Article  CAS  Google Scholar 

  • Hoeft SE, Blum JS, Stolz JF, Tabita FR, Witte B, King GM, Santini JM, Oremland RS (2007) Alkalilimnicola ehrlichii sp. nov., a novel, arsenite-oxidizing haloalkaliphilic gammaproteobacterium capable of chemoautotrophic or heterotrophic growth with nitrate or oxygen as the electron acceptor. Int J Syst Evol Microbiol 57(3):504–512

    Article  CAS  Google Scholar 

  • Huang J-H, Matzner E (2006) Dynamics of organic and inorganic arsenic in the solution phase of an acidic fen in Germany. Geochim Cosmochim Acta 70(8):2023–2033

    Article  CAS  Google Scholar 

  • Ikem A, Egilla J (2008) Trace element content of fish feed and bluegill sunfish (Lepomis macrochirus) from aquaculture and wild source in Missouri. Food Chem 110(2):301–309

    Article  CAS  Google Scholar 

  • Ilialetdinov A, Abdrashitova S (1981) Autotrophic arsenic oxidation by a Pseudomonas arsenitoxidans culture. Mikrobiologiia 50(2):197

    CAS  Google Scholar 

  • In BM (1994) Emerging technology for bioremediation of metals. CRC Press

    Google Scholar 

  • Inskeep WP, Macur RE, Hamamura N, Warelow TP, Ward SA, Santini JM (2007) Detection, diversity and expression of aerobic bacterial arsenite oxidase genes. Environ Microbiol 9(4):934–943

    Article  CAS  Google Scholar 

  • Iqbal J, Kim H-J, Yang J-S, Baek K, Yang J-W (2007) Removal of arsenic from groundwater by micellar-enhanced ultrafiltration (MEUF). Chemosphere 66(5):970–976

    Article  CAS  Google Scholar 

  • Islam FS, Gault AG, Boothman C, Polya DA, Charnock JM, Chatterjee D, Lloyd JR (2004) Role of metal-reducing bacteria in arsenic release from Bengal delta sediments. Nature 430(6995):68–71

    Article  CAS  Google Scholar 

  • Issa NB, Rajaković-Ognjanović VN, Marinković AD, Rajaković LV (2011) Separation and determination of arsenic species in water by selective exchange and hybrid resins. Anal Chim Acta 706(1):191–198

    Article  CAS  Google Scholar 

  • Jahan K, Mosto P, Mattson C, Frey E, Derchak L (2006) Microbial removal of arsenic. Water Air Soil Pollut Focus 6(1–2):71–82

    Article  CAS  Google Scholar 

  • Jain R, Adhikary H, Jha S, Jha A, Kumar GN (2012) Remodulation of central carbon metabolic pathway in response to arsenite exposure in R hodococcus sp. strain NAU-1. Microb Biotechnol 5(6):764–772

    Article  CAS  Google Scholar 

  • Jain C, Ali I (2000) Arsenic: occurrence, toxicity and speciation techniques. Water Res 34(17):4304–4312

    Article  CAS  Google Scholar 

  • Jasrotia S, Kansal A, Kishore V (2014) Arsenic phyco-remediation by Cladophora algae and measurement of arsenic speciation and location of active absorption site using electron microscopy. Microchem J 114:197–202

    Article  CAS  Google Scholar 

  • Jawad AH, Abdulhameed AS (2020) Facile synthesis of crosslinked chitosan-tripolyphosphate/kaolin clay composite for decolourization and COD reduction of remazol brilliant blue R dye: optimization by using response surface methodology. Coll Surf a: Physicochem Eng Asp 605:125329

    Article  CAS  Google Scholar 

  • Jawad AH, Abdulhameed AS, Malek NNA, AL-Othman ZA, (2020a) Statistical optimization and modeling for color removal and COD reduction of reactive blue 19 dye by mesoporous chitosan-epichlorohydrin/kaolin clay composite. Int J Biol Macromole 164:4218–4230

    Article  CAS  Google Scholar 

  • Jawad AH, Abdulhameed AS, Mastuli MS (2020b) Acid-factionalized biomass material for methylene blue dye removal: a comprehensive adsorption and mechanism study. J Taibah Univ Sci 14(1):305–313

    Article  Google Scholar 

  • Jawad AH, Mohammed IA, Abdulhameed AS (2020) Tuning of fly ash loading into chitosan-ethylene glycol diglycidyl ether composite for enhanced removal of reactive red 120 dye: optimization using the box-behnken design. J Polym Environ 28:2720–2733

    Article  CAS  Google Scholar 

  • Jegadeesan G, Mondal K, Lalvani SB (2005) Arsenate remediation using nanosized modified zerovalent iron particles. Environ Prog 24(3):289–296

    Article  CAS  Google Scholar 

  • Jiang J-Q, Graham NJ (1998) Preliminary evaluation of the performance of new pre-polymerised inorganic coagulants for lowland surface water treatment. Water Sci Technol 37(2):121–128

    Article  CAS  Google Scholar 

  • Jing C, Liu S, Patel M, Meng X (2005) Arsenic leachability in water treatment adsorbents. Environ Sci Technol 39(14):5481–5487

    Article  CAS  Google Scholar 

  • Jing C, Meng X, Liu S, Baidas S, Patraju R, Christodoulatos C, Korfiatis GP (2005) Surface complexation of organic arsenic on nanocrystalline titanium oxide. J Colloid Interface Sci 290(1):14–21

    Article  CAS  Google Scholar 

  • Johnston R, Heijnen H, Wurzel P (2001) Safe water technology. United Nations Synthesis Report on Arsenic in Drinking Water, 1–98

  • Joshi A, Chaudhuri M (1996) Removal of arsenic from ground water by iron oxide-coated sand. J Environ Eng 122(8):769–771

    Article  CAS  Google Scholar 

  • Kamaludeen SPB, Arunkumar K, Ramasamy K (2003) Bioremediation of chromium contaminated environments. Indian J Exp Biol 41:972–985

  • Kang M, Kawasaki M, Tamada S, Kamei T, Magara Y (2000) Effect of pH on the removal of arsenic and antimony using reverse osmosis membranes. Desalination 131(1–3):293–298

    Article  CAS  Google Scholar 

  • Karadjova IB, Slaveykova VI, Tsalev DL (2008) The biouptake and toxicity of arsenic species on the green microalga Chlorella salina in seawater. Aquat Toxicol 87(4):264–271

    Article  CAS  Google Scholar 

  • Karim MM (2000) Arsenic in groundwater and health problems in Bangladesh. Water Res 34(1):304–310

    Article  CAS  Google Scholar 

  • Katsoyiannis IA, Zouboulis AI (2004) Application of biological processes for the removal of arsenic from groundwaters. Water Res 38(1):17–26

    Article  CAS  Google Scholar 

  • Katsoyiannis IA, Zouboulis AI, Jekel M (2004) Kinetics of bacterial As (III) oxidation and subsequent As (V) removal by sorption onto biogenic manganese oxides during groundwater treatment. Ind Eng Chem Res 43(2):486–493

    Article  CAS  Google Scholar 

  • Kesraoui-Ouki S, Cheeseman CR, Perry R (1994) Natural zeolite utilisation in pollution control: a review of applications to metals’ effluents. J Chem Technol Biotechnol Int Res Process Environ Clean Technol 59(2):121–126

    CAS  Google Scholar 

  • Khan A, Rasul S, Munir A, Habibuddowla M, Alauddin M, Newaz S, Hussam AJJoES (2000) Appraisal of a simple arsenic removal method for ground water of Bangladesh. J Environ Sci Health Part A 35(7):1021–1041

    Article  Google Scholar 

  • Khan M, Yamamoto K, Ahmed M (2002) A low cost technique of arsenic removal from drinking water by coagulation using ferric chloride salt and alum. Water Sci Technol Water Supply 2(2):281–288

    Article  CAS  Google Scholar 

  • Khaodhiar S, Azizian MF, Osathaphan K, Nelson PO (2000) Copper, chromium, and arsenic adsorption and equilibrium modeling in an iron-oxide-coated sand, background electrolyte system. Water Air Soil Pollut 119(1–4):105–120

    Article  CAS  Google Scholar 

  • Kim M-J, Ahn K-H, Jung Y (2002) Distribution of inorganic arsenic species in mine tailings of abandoned mines from Korea. Chemosphere 49(3):307–312

    Article  CAS  Google Scholar 

  • Kim J, Benjamin MM (2004) Modeling a novel ion exchange process for arsenic and nitrate removal. Water Res 38(8):2053–2062

    Article  CAS  Google Scholar 

  • Kim DH, Kim KW, Cho J (2006) Removal and transport mechanisms of arsenics in UF and NF membrane processes. J Water Health 4(2):215–223

    Article  CAS  Google Scholar 

  • Kruger MC, Bertin PN, Heipieper HJ, Arsène-Ploetze and Biotechnology (2013) Bacterial metabolism of environmental arsenic—mechanisms and biotechnological applications. Appl Microbiol Biotechnol 97(9):3827–3841

    Article  CAS  Google Scholar 

  • Lakshmipathiraj P, Narasimhan B, Prabhakar S, Raju GB (2006) Adsorption of arsenate on synthetic goethite from aqueous solutions. J Hazard Mater 136(2):281–287

    Article  CAS  Google Scholar 

  • Kumar PR, Chaudhari S, Khilar KC, Mahajan SP (2004) Removal of arsenic from water by electrocoagulation. Chemosphere 55(9):1245–1252

    Article  CAS  Google Scholar 

  • Lakshmipathiraj P, Narasimhan B, Prabhakar S, Raju GB (2006) Adsorption of arsenate on synthetic goethite from aqueous solutions. J Hazard Mater 136(2):281–287

    Article  CAS  Google Scholar 

  • Lee H, Choi W (2002) Photocatalytic oxidation of arsenite in TiO2 suspension: kinetics and mechanisms. Environ Sci Technol 36(17):3872–3878

    Article  CAS  Google Scholar 

  • Lett M-C, Muller D, Lièvremont D, Silver S, Santini J (2012) Unified nomenclature for genes involved in prokaryotic aerobic arsenite oxidation. J Bacteriol 194(2):207–208

    Article  CAS  Google Scholar 

  • Leupin OX, Hug SJ (2005) Oxidation and removal of arsenic (III) from aerated groundwater by filtration through sand and zero-valent iron. Water Res 39(9):1729–1740

    Article  CAS  Google Scholar 

  • Levy JL, Stauber JL, Adams MS, Maher WA, Kirby JK, Jolley DF (2005) Toxicity, biotransformation, and mode of action of arsenic in two freshwater microalgae (Chlorella sp. and Monoraphidium arcuatum). Environ Toxicol Chem: an Int J 24(10):2630–2639

    Article  CAS  Google Scholar 

  • Liao VH-C, Chu Y-J, Su Y-C, Hsiao S-Y, Wei C-C, Liu C-W, Liao C-M, Shen W-C, Chang F-J (2011) Arsenite-oxidizing and arsenate-reducing bacteria associated with arsenic-rich groundwater in Taiwan. J Contam Hydrol 123(1–2):20–29

    Article  CAS  Google Scholar 

  • Lievremont D, Bertin PN, Lett M-C (2009) Arsenic in contaminated waters: biogeochemical cycle, microbial metabolism and biotreatment processes. Biochimie 91(10):1229–1237

    Article  CAS  Google Scholar 

  • Lorenzen L, Van Deventer J, Landi W (1995) Factors affecting the mechanism of the adsorption of arsenic species on activated carbon. Miner Eng 8(4–5):557–569

    Article  CAS  Google Scholar 

  • Loukidou MX, Matis KA, Zouboulis AI, Liakopoulou-Kyriakidou M (2003) Removal of As (V) from wastewaters by chemically modified fungal biomass. Water Res 37(18):4544–4552

    Article  CAS  Google Scholar 

  • Low K, Lee C (1995) Chrome waste as sorbent for the removal of arsenic (V) from aqueous solution. Environ Technol 16(1):65–71

    Article  CAS  Google Scholar 

  • Macur RE, Jackson CR, Botero LM, Mcdermott TR, Inskeep WP (2004) Bacterial populations associated with the oxidation and reduction of arsenic in an unsaturated soil. Environ Sci Technol 38(1):104–111

    Article  CAS  Google Scholar 

  • Macy JM, Nunan K, Hagen KD, Dixon DR, Harbour PJ, Cahill M, Sly LI (1996) Chrysiogenes arsenatis gen. nov., sp. nov., a new arsenate-respiring bacterium isolated from gold mine wastewater. Int J Syst Evol Microbiol 46(4):1153–1157

    CAS  Google Scholar 

  • Maeda S, Ohki A, Saikoji S, Naka K (1992) Iron (III) hydroxide-loaded coral limestone as an adsorbent for arsenic (III) and arsenic (V). Sep Sci Technol 27(5):681–689

    Article  CAS  Google Scholar 

  • Maheswari S, Murugesan A (2009) Remediation of arsenic in soil by Aspergillus nidulans isolated from an arsenic-contaminated site. Environ Technol 30(9):921–926

    Article  CAS  Google Scholar 

  • Maheswari S, Murugesan A (2011) Biosorption of As (III) ions from aqueous solution using dry, heat-treated and NaOH-treated Aspergillus nidulans. Environ Technol 32(2):211–219

    Article  CAS  Google Scholar 

  • Mahramanlioglu M, Güçlü K (2004) Equilibrium, kinetic and mass transfer studies and column operations for the removal of arsenic (III) from aqueous solutions using acid treated spent bleaching earth. Environ Technol 25(9):1067–1076

    Article  CAS  Google Scholar 

  • Makris KC, Sarkar D, Datta R (2006) Evaluating a drinking-water waste by-product as a novel sorbent for arsenic. Chemosphere 64(5):730–741

    Article  CAS  Google Scholar 

  • Mandal BK, Suzuki KTJT (2002) Arsenic round the world: a review. Talanta 58(1):201–235

    Article  CAS  Google Scholar 

  • Manju G, Raji C, Anirudhan T (1998) Evaluation of coconut husk carbon for the removal of arsenic from water. Water Res 32(10):3062–3070

    Article  CAS  Google Scholar 

  • Manning BA, Goldberg S (1996) Modeling arsenate competitive adsorption on kaolinite, montmorillonite and illite. Clays Clay Miner 44(5):609–623

    Article  CAS  Google Scholar 

  • Manning BA, Goldberg S (1997) Arsenic (III) and arsenic (V) adsorption on three California soils. Soil Sci 162(12):886–895

    Article  CAS  Google Scholar 

  • Manning BA, Goldberg S (1997) Adsorption and stability of arsenic (III) at the clay mineral− water interface. Environ Sci Technol 31(7):2005–2011

    Article  CAS  Google Scholar 

  • Mannio J, Ja O, Tuominen R, Verta M (1995) Survey of trace elements in lake waters of Finnish Lapland using the ICP-MS technique. Sci Total Environ 160:433–439

    Article  Google Scholar 

  • Masood-Khan M, Asghar HMA, Saulat H, Chawla M, Rafiq S, Khan MM, Jie WY, Aslam M, Mukhtar A (2021) Hazardous wastewater treatment by low-cost sorbent with in situ regeneration using hybrid solar energy-electrochemical system. Water Environ Res. https://doi.org/10.1002/wer.1537

    Article  Google Scholar 

  • McNeill LS, Edwards M (1997) Predicting As removal during metal hydroxide precipitation. J Am Water Works Ass 89(1):75–86

    Article  CAS  Google Scholar 

  • Meng X, Korfiatis GP, Bang S, Bang KW (2002) Combined effects of anions on arsenic removal by iron hydroxides. Toxicol Lett 133(1):103–111

    Article  CAS  Google Scholar 

  • Mikael Sehlin H, Börje Lindström E (1992) Oxidation and reduction of arsenic by Sulfolobus acidocaldarius strain BC. FEMS Microbiol Lett 93(1):87–92

    Article  Google Scholar 

  • Minja RJ, Ebina T (2002) Arsenic adsorption capabilities of soil-bentonite mixtures as buffer materials for landfills. Clay Sci 12(1):41–47

    CAS  Google Scholar 

  • Mittal A, Kurup L, Gupta VK (2005) Use of waste materials—bottom ash and de-oiled soya, as potential adsorbents for the removal of amaranth from aqueous solutions. J Hazard Mater 117(2–3):171–178

    Article  CAS  Google Scholar 

  • Mohan D, Pittman CU Jr, Bricka M, Smith F, Yancey B, Mohammad J, Steele PH, Alexandre-Franco MF, Gómez-Serrano V, Gong H (2007) Sorption of arsenic, cadmium, and lead by chars produced from fast pyrolysis of wood and bark during bio-oil production. J Colloid Interface Sci 310(1):57–73

    Article  CAS  Google Scholar 

  • Mokashi S, Paknikar K (2002) Arsenic (III) oxidizing Microbacterium lacticum and its use in the treatment of arsenic contaminated groundwater. Lett Appl Microbiol 34(4):258–262

    Article  CAS  Google Scholar 

  • Mondal P, Majumder C, Mohanty B (2008) Treatment of arsenic contaminated water in a batch reactor by using Ralstonia eutropha MTCC 2487 and granular activated carbon. J Hazard Mater 153(1–2):588–599

    Article  CAS  Google Scholar 

  • Moore JN, Walker JR, Hayes TH (1990) Reaction scheme for the oxidation of As (III) to As (V) by birnessite. Clays Clay Miner 38(5):549–555

    Article  CAS  Google Scholar 

  • Mubashir M, Fong YY, Keong LK (2015) Accelerated synthesis of deca-dodecasil 3 rhombohedral (DDR3) zeolite crystals via hydrothermal growth coupled with ultrasonic irradiation method. RSC Adv 5(29):22658–22664. https://doi.org/10.1039/C5RA00009B

    Article  CAS  Google Scholar 

  • Mubashir M, Fong YY, Keong LK, Sharrif MAB (2015) Synthesis and performance of deca-dodecasil 3 rhombohedral (ddr)-type zeolite membrane in CO2 separation–a review. ASEAN J Chem Eng 14(2):48–57. https://doi.org/10.22146/ajche.49708

    Article  Google Scholar 

  • Mubashir M, Fong YY, Leng CT (2018) Prediction of CO2 permeability in NH2-MIL-53(Al)/cellulose acetate mixed matrix membranes using theoretical models. Int J Integr Eng 10(5):176–180

    Article  Google Scholar 

  • Mubashir M, Yeong YF, Keong LK (2015) Methods comparison for the synthesis of deca-dodecasil 3 rhombohedral (DDR3) zeolite crystals. Appl Mech Mater 773:1096–1100. https://doi.org/10.4028/www.scientific.net/AMM.773-774.1096

    Article  Google Scholar 

  • Mukherjee A, Das D, Mondal SK, Biswas R, Das TK, Boujedaini N, Khuda-Bukhsh AR (2010) Tolerance of arsenate-induced stress in Aspergillus niger, a possible candidate for bioremediation. Ecotoxicol Environ Saf 73(2):172–182

    Article  CAS  Google Scholar 

  • Mukhtar A, Saqib S, Safdar F, Hameed A, Rafiq S, Mellon NB, Amen R, Khan MS, Ullah S, Assiri MA (2020) Experimental and comparative theoretical study of thermal conductivity of MWCNTs-kapok seed oil-based nanofluid. Int Commun Heat Mass Transfer 110:104402

    Article  CAS  Google Scholar 

  • Mukhtar A, Ullah S, Al-Sehemi AG, Assiri MA, Saqib S, Amen R, Babar M, Bustam MA, Ahmad T (2021) Synthesis and stability of metal-organic frameworks (MOFs) photocatalysts for the removal of persistent organic pollutants (POPs) from wastewater. Curr Anal Chem 17(1):61–81

    Article  CAS  Google Scholar 

  • Muller D, Lievremont D, Simeonova DD, Hubert J-C, Lett M-C (2003) Arsenite oxidase aox genes from a metal-resistant β-proteobacterium. J Bacteriol 185(1):135–141

    Article  CAS  Google Scholar 

  • Mumpton FA (ed) (2018) Mineralogy and geology of natural zeolites, vol. 4. Walter de Gruyter GmbH & Co KG

  • Mumtaz I, Majeed Z, Ajab Z, Ahmad B, Khurshid K, Mubashir M (2019) Optimized tuning of rosin adduct with maleic anhydride for smart applications in controlled and targeted delivery of urea for higher plant’s uptake and growth efficiency. Ind Crops Prod 133:395–408

    Article  CAS  Google Scholar 

  • Namasivayam C, Senthilkumar S (1998) Removal of arsenic (V) from aqueous solution using industrial solid waste: adsorption rates and equilibrium studies. Ind Eng Chem Res 37(12):4816–4822

    Article  CAS  Google Scholar 

  • Nath B, Stuben D, Mallik SB, Chatterjee D, Charlet L (2009) Reply to the comment on “Mobility of arsenic in West Bengal aquifers conducting low and high groundwater arsenic. Part I: comparative hydrochemical and hydrogeological characteristics” by Subhrangsu K. Acharyya. Appl Geochem 24(1):186–187

    Article  CAS  Google Scholar 

  • Nguyen T, Vigneswaran S, Ngo H, Pokhrel D, Viraraghavan T (2006) Specific treatment technologies for removing arsenic from water. Eng Life Sci 6(1):86–90

    Article  CAS  Google Scholar 

  • Niazi NK, Bibi I, Shahid M, Ok YS, Burton ED, Wang H, Shaheen SM, Rinklebe J, Lüttge A (2018) Arsenic removal by perilla leaf biochar in aqueous solutions and groundwater: an integrated spectroscopic and microscopic examination. Environ Pollut 232:31–41

    Article  CAS  Google Scholar 

  • Nicomel NR, Leus K, Folens K, Van Der Voort P, Du Laing GJIJoer, Health P (2016) Technologies for arsenic removal from water: current status and future perspectives. Int J Environ Res Pub Health 13(1):62

    Article  CAS  Google Scholar 

  • Niggemyer A, Spring S, Stackebrandt E, Rosenzweig RF (2001) Isolation and characterization of a novel As (V)-reducing bacterium: implications for arsenic mobilization and the genus Desulfitobacterium. Appl Environ Microbiol 67(12):5568–5580

    Article  CAS  Google Scholar 

  • Ning RY (2002) Arsenic removal by reverse osmosis. Desalination 143(3):237–241

    Article  CAS  Google Scholar 

  • Ohki A, Nakayachigo K, Naka K, Maeda S (1996) Adsorption of inorganic and organic arsenic compounds by Aluminium-loaded coral limestone. Appl Organomet Chem 10(9):747–752

    Article  CAS  Google Scholar 

  • Ongley LK, Armienta MA, Heggeman K, Lathrop AS, Mango H, Miller W, Pickelner S (2001) Arsenic removal from contaminated water by the Soyatal Formation Zimapán Mining District Mexico–a potential low-cost low-tech remediation system. Geochem Explor Environ Anal 1(1):23–31

    Article  CAS  Google Scholar 

  • Onyango MS, Matsuda H, Ogada T (2003) Sorption kinetics of arsenic onto iron-conditioned zeolite. J Chem Eng Jpn 36(4):477–485

    Article  CAS  Google Scholar 

  • Organization WH (2011) WHO report on the global tobacco epidemic, 2011: warning about the dangers of tobacco. World Health Organization, Geneva

    Google Scholar 

  • Organization, WH (2004) The World health report: 2004: changing history, World Health Organization

  • Osborne F, Ehrlich H (1976) Oxidation of arsenite by a soil isolate of Alcaligenes. J Appl Bacteriol 41(2):295–305

    Article  CAS  Google Scholar 

  • Pagnanelli F, Mainelli S, Vegliò F, Toro L (2003) Heavy metal removal by olive pomace: biosorbent characterisation and equilibrium modelling. Chem Eng Sci 58(20):4709–4717

    Article  CAS  Google Scholar 

  • Pande SP, Deshpande LS, Patni P, Lutade S (1997) Arsenic removal studies in some ground waters of West Bengal, India. J Environ Sci Health Part A 32(7):1981–1987

    Google Scholar 

  • Parga JR, Cocke DL, Valenzuela JL, Gomes JA, Kesmez M, Irwin G, Moreno H, Weir M (2005) Arsenic removal via electrocoagulation from heavy metal contaminated groundwater in La Comarca Lagunera Mexico. J Hazard Mater 124(1–3):247–254

    Article  CAS  Google Scholar 

  • Payne KB, Abdel-Fattah TM (2005) Adsorption of arsenate and arsenite by iron-treated activated carbon and zeolites: effects of pH, temperature, and ionic strength. J Environ Sci Health 40(4):723–749

    Article  CAS  Google Scholar 

  • Pereira P, Dutra A, Martins A (2007) Adsorptive removal of arsenic from river waters using pisolite. Miner Eng 20(1):52–59

    Article  CAS  Google Scholar 

  • Peräniemi S, Hannonen S, Mustalahti H, Ahlgrén M (1994) Zirconium-loaded activated charcoal as an adsorbent for arsenic, selenium and mercury. Fresenius J Anal Chem 349(7):510–515

    Article  Google Scholar 

  • Petrusevski B, Sharma S, Kruis F, Omeruglu P, Schippers J (2002) Family filter with iron-coated sand: solution for arsenic removal in rural areas. Water Sci Technol Water Supply 2(5–6):127–133

    Article  CAS  Google Scholar 

  • Philips S, Taylor ML (1976) Oxidation of arsenite to arsenate by Alcaligenes faecalis. Appl Environ Microbiol 32(3):392–399

    Article  CAS  Google Scholar 

  • Pokhrel D, Viraraghavan T (2006) Arsenic removal from an aqueous solution by a modified fungal biomass. Water Res 40(3):549–552

    Article  CAS  Google Scholar 

  • Pokhrel D, Viraraghavan T (2009) Biological filtration for removal of arsenic from drinking water. J Environ Manag 90(5):1956–1961

    Article  CAS  Google Scholar 

  • Prasad G (1994) Removal of As (V) from aqueous systems by adsorption onto geological materials Arsenic in the Environment, vol 26. Wiley, New York

    Google Scholar 

  • Qin J, Lehr CR, Yuan C, Le XC, McDermott TR, Rosen BP (2009) Biotransformation of arsenic by a yellowstone thermoacidophilic eukaryotic alga. Proc Natl Acad Sci 106(13):5213–5217

    Article  CAS  Google Scholar 

  • Qin J, Rosen BP, Zhang Y, Wang G, Franke S, Rensing C (2006) Arsenic detoxification and evolution of trimethylarsine gas by a microbial arsenite S-adenosylmethionine methyltransferase. Proc Natl Acad Sci 103(7):2075–2080

    Article  CAS  Google Scholar 

  • Quansah R, Armah FA, Essumang DK, Luginaah I, Clarke E, Marfoh K, Cobbina SJ, Nketiah-Amponsah E, Namujju PB, Obiri S (2015) Association of arsenic with adverse pregnancy outcomes/infant mortality: a systematic review and meta-analysis. Environ Health Perspect 123(5):412–421

    Article  Google Scholar 

  • Rabia A, Yaseen M, Mukhtar A, Klemeš JJ, Saqib S, Ullah S, Al-Sehemi AG et al (2020) Lead and cadmium removal from wastewater using eco-friendly biochar adsorbent derived from rice husk, wheat straw, and corncob. Clean Eng Technol 1:100006

    Article  Google Scholar 

  • Rabia A, Mukhtar A, Saqib S, Ullah S, Al-Sehemi AG, Mehdi SEH, Babar M, Bustam MA (2021a) History and development of nanomaterials. In: Nanomaterials: Synthesis, Characterization, Hazards and Safety, pp 1–14. Elsevier

  • Rabia A, Bibi MSI, Niazi NK, Zulfqar A, Nawaz MF, Shakoor MB, Mukhtar A, Rehman T (2021b) Developments in Nanoadsorbents for the Treatment of Arsenic-Contaminated Water. Arsenic Toxicity: Challenges and Solutions: 325

  • Rahman MH, Wasiuddin NM, Islam MR (2004) Experimental and numerical modeling studies of arsenic removal with wood ash from aqueous streams. Can J Chem Eng 82(5):968–977

    Article  CAS  Google Scholar 

  • Ramakrishna DM, Viraraghavan T, Jin Y-C (2006) Iron oxide coated sand for arsenic removal: investigation of coating parameters using factorial design approach. Pract Periodical Hazard Toxic Radioact Waste Manag 10(4):198–206

    Article  CAS  Google Scholar 

  • Ramaswami A, Tawachsupa S, Isleyen M (2001) Batch-mixed iron treatment of high arsenic waters. Water Res 35(18):4474–4479

    Article  CAS  Google Scholar 

  • Rehman A, Butt SA, Hasnain S (2010) Isolation and characterization of arsenite oxidizing Pseudomonas lubricans and its potential use in bioremediation of wastewater. Afr J Biotech 9(10):1493–1498

    Article  CAS  Google Scholar 

  • Reimann C, Matschullat J, Birke M, Salminen R (2010) Antimony in the environment: lessons from geochemical mapping. Appl Geochem 25(2):175–198

    Article  CAS  Google Scholar 

  • Reuther R (1992) Geochemical mobility of arsenic in a flowthrough water-sediment system. Environ Technol 13(9):813–823

    Article  CAS  Google Scholar 

  • Rhine E, Chadhain SN, Zylstra G, Young L (2007) The arsenite oxidase genes (aroAB) in novel chemoautotrophic arsenite oxidizers. Biochem Biophys Res Commun 354(3):662–667

    Article  CAS  Google Scholar 

  • Rhine ED, Phelps CD, Young L (2006) Anaerobic arsenite oxidation by novel denitrifying isolates. Environ Microbiol 8(5):899–908

    Article  CAS  Google Scholar 

  • Richmond WR, Loan M, Morton J, Parkinson GM (2004) Arsenic removal from aqueous solution via ferrihydrite crystallization control. Environ Sci Technol 38(8):2368–2372

    Article  CAS  Google Scholar 

  • Ritchie VJ, Ilgen AG, Mueller SH, Trainor TP, Goldfarb RJ (2013) Mobility and chemical fate of antimony and arsenic in historic mining environments of the Kantishna Hills district, Denali National Park and Preserve, Alaska. Chem Geol 335:172–188

    Article  CAS  Google Scholar 

  • Rosen BP (2002) Biochemistry of arsenic detoxification. FEBS Lett 529(1):86–92

    Article  CAS  Google Scholar 

  • Roy P, Saha A (2002) Metabolism and toxicity of arsenic: ahuman carcinogen. Curr Sci 38–45

  • Rushabh S, Sanjay J (2013) Alishewanella sp. strain GIDC-5, arsenite hyper-tolerant bacteria isolated from industrial effluent of South Gujarat, India. Chem Ecol 29(5):427–436

    Article  CAS  Google Scholar 

  • Saada A, Breeze D, Crouzet C, Cornu S, Baranger P (2003) Adsorption of arsenic (V) on kaolinite and on kaolinite–humic acid complexes: role of humic acid nitrogen groups. Chemosphere 51(8):757–763

    Article  CAS  Google Scholar 

  • Sahabi DM, Takeda M, Suzuki I, Koizumi J-I (2009) Adsorption and abiotic oxidation of arsenic by aged biofilter media: equilibrium and kinetics. J Hazard Mater 168(2–3):1310–1318

    Article  CAS  Google Scholar 

  • Salmassi TM, Venkateswaren K, Satomi M, Newman DK, Hering JG (2002) Oxidation of arsenite by Agrobacterium albertimagni, AOL15, sp. nov., isolated from Hot Creek, California. Geomicrobiol J 19(1):53–66

    Article  CAS  Google Scholar 

  • Sami U, Al-Sehemi AG, Mubashir M, Mukhtar A, Saqib S, Bustam MA, Cheng CK, Ibrahim M, Show PL (2021) Adsorption behavior of mercury over hydrated lime: experimental investigation and adsorption process characteristic study. Chemosphere 271:129504

    Article  CAS  Google Scholar 

  • Santini JM, Sly LI, Schnagl RD, Macy JM (2000) A new chemolithoautotrophic arsenite-oxidizing bacterium isolated from a gold mine: phylogenetic, physiological, and preliminary biochemical studies. Appl Environ Microbiol 66(1):92–97

    Article  CAS  Google Scholar 

  • Santini JM, Sly LI, Wen A, Comrie D, Wulf-Durand PD, Macy JM (2002) New arsenite-oxidizing bacteria isolated from Australian gold mining environments–phylogenetic relationships. Geomicrobiol J 19(1):67–76

    Article  CAS  Google Scholar 

  • Sarı A, Tuzen M (2009) Biosorption of As (III) and As (V) from aqueous solution by macrofungus (Inonotus hispidus) biomass: equilibrium and kinetic studies. J Hazard Mater 164(2–3):1372–1378

    Article  CAS  Google Scholar 

  • Sathishkumar M, Murugesan G, Ayyasamy P, Swaminathan K, Lakshmanaperumalsamy P (2004) Bioremediation of arsenic contaminated groundwater by modified mycelial pellets of Aspergillus fumigatus. Bull Environ Contam Toxicol 72(3):617–624

    Article  CAS  Google Scholar 

  • Sele V, Sloth JJ, Lundebye A-K, Larsen EH, Berntssen MH, Amlund H (2012) Arsenolipids in marine oils and fats: a review of occurrence, chemistry and future research needs. Food Chem 133(3):618–630

    Article  CAS  Google Scholar 

  • Shahid M, Dumat C, Niazi NK, Khalid S (2018) Global scale arsenic pollution: increase the scientific knowledge to reduce human exposure. VertigO-la revue électronique en sciences de l'environnement Hors-série 31

  • Shakoor MB, Niazi NK, Bibi I, Murtaza G, Kunhikrishnan A, Seshadri B, Shahid M, Ali S, Bolan NS, Ok YSJCRiES (2016) Remediation of arsenic-contaminated water using agricultural wastes as biosorbents. Crit Rev Environ Sci Technol 46(5):467–499

    Article  CAS  Google Scholar 

  • Sharma VK, Sohn M (2009) Aquatic arsenic: toxicity, speciation, transformations, and remediation. Environ Int 35(4):743–759

    Article  CAS  Google Scholar 

  • Shrestha RA, Lama B, Joshi J, Sillanpää M (2008) Effects of Mn (II) and Fe (II) on microbial removal of arsenic (III). Environ Sci Pollut Res-Int 15(4):303

    Article  Google Scholar 

  • Shrestha RR, Shrestha MP, Upadhyay NP, Pradhan R, Khadka R, Maskey A, Maharjan M, Tuladhar S, Dahal BM, Shrestha K (2003) Groundwater arsenic contamination, its health impact and mitigation program in Nepal. J Environ Sci Health, Part A 38(1):185–200

    Article  CAS  Google Scholar 

  • Simeonova DD, Micheva K, Muller DA, Lagarde F, Lett MC, Groudeva VI, Lièvremont D (2005) Arsenite oxidation in batch reactors with alginate-immobilized ULPAs1 strain. Biotechnol Bioeng 91(4):441–446

    Article  CAS  Google Scholar 

  • Singh H (2006) Mycoremediation: fungal bioremediation. Wiley

    Book  Google Scholar 

  • Singh D, Prasad G, Rupainwar D (1996) Adsorption technique for the treatment of As (V)-rich effluents. Colloids Surf A 111(1–2):49–56

    Article  CAS  Google Scholar 

  • Singh D, Prasad G, Rupainwar D, Singh V (1988) As (III) removal from aqueous solution by adsorption. Water Air Soil Pollut 42(3–4):373–386

    CAS  Google Scholar 

  • Singh M, Singh AK, Srivastava N, Singh S, Chowdhary A (2010) Arsenic mobility in fluvial environment of the Ganga Plain, northern India. Environ Earth Sci 59(8):1703–1715

    Article  CAS  Google Scholar 

  • Smedley PL, Kinniburgh DG (2002) A review of the source, behaviour and distribution of arsenic in natural waters. Appl Geochem 17(5):517–568

    Article  CAS  Google Scholar 

  • Smedley PL, Kinniburgh DG (2001) "United Nations synthesis report on arsenic in drinking-water." British Geological Survey: 1–61

  • Smith RL, Ceazan ML, Brooks MH (1994) Autotrophic, hydrogen-oxidizing, denitrifying bacteria in groundwater, potential agents for bioremediation of nitrate contamination. Appl Environ Microbiol 60(6):1949–1955

    Article  CAS  Google Scholar 

  • Smith AH, Marshall G, Yuan Y, Ferreccio C, Liaw J, von Ehrenstein O, Steinmaus C, Bates MN, Selvin S (2006) Increased mortality from lung cancer and bronchiectasis in young adults after exposure to arsenic in utero and in early childhood. Environ Health Perspect 114(8):1293–1296

    Article  CAS  Google Scholar 

  • Srivastava PK, Vaish A, Dwivedi S, Chakrabarty D, Singh N, Tripathi RD (2011) Biological removal of arsenic pollution by soil fungi. Sci Total Environ 409(12):2430–2442

    Article  CAS  Google Scholar 

  • Stolz JF, Basu P, Santini JM, Oremland RS (2006) Arsenic and selenium in microbial metabolism. Annu Rev Microbiol 60:107–130

    Article  CAS  Google Scholar 

  • Sud D, Mahajan G, Kaur M (2008) Agricultural waste material as potential adsorbent for sequestering heavy metal ions from aqueous solutions–a review. Biores Technol 99(14):6017–6027

    Article  CAS  Google Scholar 

  • Surip SN, Abdulhameed AS, Garba ZN, Syed-Hassan SSA, Ismail K, Jawad AH (2020) H2SO4-treated Malaysian low rank coal for methylene blue dye decolourization and cod reduction: optimization of adsorption and mechanism study. Surf Interfaces 21:100641

    Article  CAS  Google Scholar 

  • Suttigarn A, Wang Y-T (2005) Arsenite oxidation by Alcaligenes faecalis strain O1201. J Environ Eng 131(9):1293–1301

    Article  CAS  Google Scholar 

  • Sánchez-Rodas D, Gómez-Ariza JL, Giráldez I, Velasco A, Morales E (2005) Arsenic speciation in river and estuarine waters from southwest Spain. Sci Total Environ 345(1–3):207–217

    Article  CAS  Google Scholar 

  • Tamaki S, Frankenberger WT (1992) Environmental biochemistry of arsenic reviews of environmental contamination and toxicology. Springer, NewYork, pp 79–110

    Book  Google Scholar 

  • Thirunavukkarasu O, Viraraghavan T, Subramanian K (2001) Removal of arsenic in drinking water by iron oxide-coated sand and ferrihydrite—batch studies. Water Q Res J 36(1):55–70

    Article  CAS  Google Scholar 

  • Thirunavukkarasu O, Viraraghavan T, Subramanian K, Chaalal O, Islam M (2005) Arsenic removal in drinking water—impacts and novel removal technologies. Energy Sources 27(1–2):209–219

    Article  CAS  Google Scholar 

  • Thirunavukkarasu O, Viraraghavan T, Subramanian K, Tanjore S (2002) Organic arsenic removal from drinking water. Urban Water 4(4):415–421

    Article  CAS  Google Scholar 

  • Thomas DJ, Waters SB, Styblo M (2004) Elucidating the pathway for arsenic methylation. Toxicol Appl Pharmacol 198(3):319–326

    Article  CAS  Google Scholar 

  • Turner A (1954) Bacterial oxidation of arsenite I. Description of bacteria isolated from arsenical cattle-dipping fluids. Aust J Biol Sci 7(4):452–478

    Article  CAS  Google Scholar 

  • Urík M, Čerňanský S, Ševc J, Šimonovičová A, Littera P (2007) Biovolatilization of arsenic by different fungal strains. Water Air Soil Pollut 186(1–4):337–342

    Article  CAS  Google Scholar 

  • Vaishya RC, Gupta SK (2003) Modelling arsenic (III) adsorption from water by sulfate-modified iron oxide-coated sand (SMIOCS). J Chem Technol Biotechnol Int Res Process Environ Clean Technol 78(1):73–80

    CAS  Google Scholar 

  • Vaishya RC, Gupta SK (2005) Modeling arsenic (V) removal from water by sulfate modified iron-oxide coated sand (SMIOCS). Sep Sci Technol 39(3):645–666

    Article  CAS  Google Scholar 

  • Vala AK (2010) Tolerance and removal of arsenic by a facultative marine fungus Aspergillus candidus. Biores Technol 101(7):2565–2567

    Article  CAS  Google Scholar 

  • Valenzuela C, Campos V, Yañez J, Zaror C, Mondaca M (2009) Isolation of arsenite-oxidizing bacteria from arsenic-enriched sediments from Camarones River, Northern Chile. Bull Environ Contam Toxicol 82(5):593–596

    Article  CAS  Google Scholar 

  • Velizarov S, Crespo JG, Reis MA (2004) Removal of inorganic anions from drinking water supplies by membrane bio/processes. Rev Environ Sci Bio/technol 3(4):361–380

    Article  CAS  Google Scholar 

  • Viraraghavan T, Subramanian K, Aruldoss J (1999) Arsenic in drinking water—problems and solutions. Water Sci Technol 40(2):69–76

    Article  CAS  Google Scholar 

  • Vithanage M, Chandrajith R, Bandara A, Weerasooriya R (2006) Mechanistic modeling of arsenic retention on natural red earth in simulated environmental systems. J Colloid Interface Sci 294(2):265–272

    Article  CAS  Google Scholar 

  • Wan J, Klein J, Simon S, Joulian C, Dictor M-C, Deluchat V, Dagot C (2010) AsIII oxidation by Thiomonas arsenivorans in up-flow fixed-bed reactors coupled to as sequestration onto zero-valent iron-coated sand. Water Res 44(17):5098–5108

    Article  CAS  Google Scholar 

  • Vithanage M, Senevirathna W, Chandrajith R, Weerasooriya R (2007) Arsenic binding mechanisms on natural red earth: a potential substrate for pollution control. Sci Total Environ 379(2–3):244–248

    Article  CAS  Google Scholar 

  • Wan J, Klein J, Simon S, Joulian C, Dictor M-C, Deluchat V, Dagot C (2010) AsIII oxidation by Thiomonas arsenivorans in up-flow fixed-bed reactors coupled to as sequestration onto zero-valent iron-coated sand. Water Res 44(17):5098–5108

    Article  CAS  Google Scholar 

  • Wan J, Klein J, Simon S, Joulian C, Dictor M-C, Deluchat V, Dagot C (2010) AsIII oxidation by Thiomonas arsenivorans in up-flow fixed-bed reactors coupled to as sequestration onto zero-valent iron-coated sand. Water Res 44(17):5098–5108

    Article  CAS  Google Scholar 

  • Wang N-X, Li Y, Deng X-H, Miao A-J, Ji R, Yang L-Y (2013) Toxicity and bioaccumulation kinetics of arsenate in two freshwater green algae under different phosphate regimes. Water Res 47(7):2497–2506

    Article  CAS  Google Scholar 

  • Wang D, Tang H (2001) Modified inorganic polymer flocculant-PFSi: its preparation, characterization and coagulation behavior. Water Res 35(14):3418–3428

    Article  CAS  Google Scholar 

  • Weeger W, Lievremont D, Perret M, Lagarde F, Hubert J-C, Leroy M, Lett M-C (1999) Oxidation of arsenite to arsenate by a bacterium isolated from an aquatic environment. Biometals 12(2):141–149

    Article  CAS  Google Scholar 

  • Weng Y-H, Chaung-Hsieh LH, Lee H-H, Li K-C, Huang C (2005) Removal of arsenic and humic substances (HSs) by electro-ultrafiltration (EUF). J Hazard Mater 122(1–2):171–176

    Article  CAS  Google Scholar 

  • Wickramasinghe S, Han B, Zimbron J, Shen Z, Karim M (2004) Arsenic removal by coagulation and filtration: comparison of groundwaters from the United States and Bangladesh. Desalination 169(3):231–244

    Article  CAS  Google Scholar 

  • Xu Y-H, Nakajima T, Ohki A (2002) Adsorption and removal of arsenic (V) from drinking water by aluminum-loaded Shirasu-zeolite. J Hazard Mater 92(3):275–287

    Article  CAS  Google Scholar 

  • Yadava K, Tyagi B, Singh V (1988) Removal of arsenic (III) from aqueous solution by china clay. Environ Technol 9(11):1233–1244

    CAS  Google Scholar 

  • Yan X-P, Kerrich R, Hendry MJ (2000) Distribution of arsenic (III), arsenic (V) and total inorganic arsenic in porewaters from a thick till and clay-rich aquitard sequence, Saskatchewan, Canada. Geochim Cosmochim Acta 64(15):2637–2648

    Article  CAS  Google Scholar 

  • Yang L, Li X, Chu Z, Ren Y, Zhang J (2014) Distribution and genetic diversity of the microorganisms in the biofilter for the simultaneous removal of arsenic, iron and manganese from simulated groundwater. Biores Technol 156:384–388

    Article  CAS  Google Scholar 

  • Yin X-X, Wang L, Bai R, Huang H, Sun G-X (2012) Accumulation and transformation of arsenic in the blue-green alga Synechocysis sp. PCC6803. Water Air Soil Pollut 223(3):1183–1190

    Article  CAS  Google Scholar 

  • Yoon I-H, Chang J-S, Lee J-H, Kim K-W (2009) Arsenite oxidation by Alcaligenes sp. strain RS-19 isolated from arsenic-contaminated mines in the Republic of Korea. Environ Geochem Health 31(1):109

    Article  CAS  Google Scholar 

  • Yuan T, Luo Q-F, Hu J-Y, Ong S-L, Ng W-J (2003) A study on arsenic removal from household drinking water. J Environ Sci Health Part A 38(9):1731–1744

    Article  CAS  Google Scholar 

  • Yuan T, Yong Hu J, Ong SL, Luo QF, Jun Ng W (2002) Arsenic removal from household drinking water by adsorption. J Environ Sci Health, Part A 37(9):1721–1736

    Article  CAS  Google Scholar 

  • Zargar K, Hoeft S, Oremland R, Saltikov CW (2010) Identification of a novel arsenite oxidase gene, arxA, in the haloalkaliphilic, arsenite-oxidizing bacterium Alkalilimnicola ehrlichii strain MLHE-1. J Bacteriol 192(14):3755–3762

    Article  CAS  Google Scholar 

  • Zaw M, Emett MT (2002) Arsenic removal from water using advanced oxidation processes. Toxicol Lett 133(1):113–118

    Article  CAS  Google Scholar 

  • Zhang H, Selim H (2005) Kinetics of arsenate adsorption−desorption in soils. Environ Sci Technol 39(16):6101–6108

    Article  CAS  Google Scholar 

  • Zhang S-Y, Sun G-X, Yin X-X, Rensing C, Zhu Y-G (2013) Biomethylation and volatilization of arsenic by the marine microalgae Ostreococcus tauri. Chemosphere 93(1):47–53

    Article  CAS  Google Scholar 

  • Zhang Y, Yang M, Huang X (2003) Arsenic (V) removal with a Ce (IV)-doped iron oxide adsorbent. Chemosphere 51(9):945–952

    Article  CAS  Google Scholar 

  • Zobrist J, Dowdle PR, Davis JA, Oremland RS (2000) Mobilization of arsenite by dissimilatory reduction of adsorbed arsenate. Environ Sci Technol 34(22):4747–4753

    Article  CAS  Google Scholar 

  • Zouboulis A, Katsoyiannis I (2002) Removal of arsenates from contaminated water by coagulation–direct filtration. Sep Sci Technol 37(12):2859–2873

    Article  CAS  Google Scholar 

  • Zouboulis AI, Katsoyiannis IA (2005) Recent advances in the bioremediation of arsenic-contaminated groundwaters. Environ Int 31(2):213–219

    Article  CAS  Google Scholar 

  • Zouboulis A, Kydros K, Matis K (1993) Arsenic (III) and arsenic (V) removal from solutions by pyrite fines. Sep Sci Technol 28(15–16):2449–2463

    Article  CAS  Google Scholar 

  • غلامی, مختاری, سیداحمد, عامری, احمد and ع. فرد (2006) Application of reverse osmosis technology for arsenic removal from drinking water Desalination 200(1–3): 725-727

Download references

Acknowledgements

The authors are thankful to Institute of Environmental Sciences, Faculty of Agriculture, University of Agriculture, Faisalabad; The authors also acknowledge the Deanship of Scientific Research at King Khalid University, Saudi Arabia for support through Research Groups Project under grant number (RGP.1/73/42), and School of Engineering of Asia Pacific University of Technology and Innovation, Malaysia, for their technical support.

Funding

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Muhammad Mubashir, Muhammad Abdul Qyyum or Pau Loke Show.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mehdi, S.E.H., Amen, R., Ali, A. et al. Sources, chemistry, bioremediation and social aspects of arsenic-contaminated waters: a review. Environ Chem Lett 19, 3859–3886 (2021). https://doi.org/10.1007/s10311-021-01254-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10311-021-01254-3

Keywords

Navigation