Skip to main content
Log in

Ecosystem Exchange of Carbon Dioxide and Water in Cowberry–Lichen Pine Forest in the Middle Taiga Subzone of Eastern Europe

  • Published:
Russian Journal of Ecology Aims and scope Submit manuscript

Abstract—

To assess carbon dioxide exchange in the ecosystem of cowberry–lichen pine forest, 8790 eddy covariance measurements were made during the summer–autumn period. The annual cycle of CO2 fluxes between forest and atmosphere was reconstructed using regression equations. The total net CO2 exchange, gross photosynthesis, and ecosystem respiration in the pine forest were estimated at −103, −407, and 304 g C m–2 year–1, respectively. Total evapotranspiration in June to September was 98 mm, and the efficiency of water utilization for gross photosynthesis varied about 2–3 g C kg–1 Н2О. A close correlation was revealed between the daily average values of gross photosynthesis and total evaporation over the forest canopy. The rates of net ecosystem CO2 exchange and evapotranspiration in the cowberry–lichen pine forest proved to be significantly lower than in a spruce forest of the East European taiga zone, which confirms the hypothesis that the structure of forest cover has an effect on the parameters of energy and mass exchange at the surface layer of the atmosphere.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

Similar content being viewed by others

REFERENCES

  1. Vtoroi otsenochnyi doklad Rosgidrometa ob izmeneniyakh klimata i ikh posledstviyakh na territorii Rossiiskoi Federatsii (The Federal Service for Hydrometeorology and Environmental Monitoring: The Second Assessment Report on Climate Change and Its Consequences in the Territory of the Russian Federation), Moscow: Rosgidromet, 2014.

  2. Lapenis, A., Shvidenko, A., Shepaschenko, D., et al., Acclimation of Russian forests to recent changes in climate, Glob. Change Biol., 2005, vol. 11, pp. 2090–2102.

    Article  Google Scholar 

  3. Fernandez-Martinez, M., Sardans, J., Chevallier, J., et al., Global trends in carbon sinks and their relationships with CO2 and temperature, Nat. Climate Change, 2019, vol. 9, pp. 73–79. https://doi.org/10.1038/s41558-018-0367-7

    Article  CAS  Google Scholar 

  4. Gauthier, S., Bernier, P., Kuuluvainen, T., et al., Boreal forest health and global change, Science, 2015, vol. 349, pp. 819–822.

    Article  CAS  Google Scholar 

  5. Alekseychik, P., Lappalainen, H., Petaja, T., et al., Ground-based station network in Arctic and Subarctic Eurasia: An overview, Geogr. Environ. Sustain., 2016, vol. 9, no. 2, pp. 75–81. https://doi.org/10.15356/2071-9388_02v09_2016_06

    Article  Google Scholar 

  6. Low, B.E., Falge, E., Gu, L., et al., Environmental controls over carbon dioxide and water vapor exchange of terrestrial vegetation, Agric. For. Meteorol., 2002, vol. 113, pp. 97–120.

    Article  Google Scholar 

  7. Brummer, Ch., Black, T., Jassal, R., et al., How climate and vegetation type influence evapotranspiration and water use efficiency in Canadian forest, peatland and grassland ecosystems, Agric. For. Meteorol., 2012, vol. 153, pp. 14–30. https://doi.org/10.1016/j.agrformet.2011.04.008

    Article  Google Scholar 

  8. Zamolodchikov, D.G., Gitarskii, M.L., Shilkin, A.V., et al., Monitoring of carbon dioxide and water vapor cycles in the Log Taezhnyi test area (Valdai National Park), Fundament. Prikl. Klimatol., 2017, vol. 1, pp. 54–68.

    Google Scholar 

  9. Zagirova, S.V., Mikhailov, O.A., and Elsakov, V.V., Carbon dioxide and water exchange between spruce forest and atmosphere in spring–summer under different weather conditions, Contemp. Probl. Ecol., 2019, vol. 12, pp. 45–58.

    Article  Google Scholar 

  10. Barr, A., Black, T., Hogg, E., et al., Climatic controls on the carbon and water balances of a boreal aspen forests, 1994–2003, Glob. Change Biol., 2007, vol. 13, pp. 561–576. https://doi.org/10.1111/j.1365-2486.2006.01220.x

    Article  Google Scholar 

  11. Baldocchi, D., Chu, H., and Reichstein, M., Inter-annual variability of net and gross ecosystem carbon fluxes: A review, Agric. For. Meteorol., 2018, vol. 249, pp. 520–533. https://doi.org/10.1016/j.agrformet.2017.05.015

    Article  Google Scholar 

  12. Uglerod v lesnykh i bolotnykh ekosistemakh osobo okhranyaemykh prirodnykh territorii Respubliki Komi (Carbon in Forest and Bog Ecosystems of Specially Protected Natural Areas in the Komi Republic), Syktyvkar: Inst. Biol. Komi Nauch. Tsentra Ural. Otd. Ross. Akad. Nauk, 2014.

  13. Galenko, E.P., Fitoklimat i energeticheskie faktory produktivnosti khvoinogo lesa Evropeiskogo Severa (Phytoclimate and Energy Factors of Productivity of Conifer Forests in northern Europe), Leningrad: Nauka, 1983.

  14. Sen’kina, S.N., Relationship between water exchange and phytomass production in the tree and herb–dwarf shrub layers of bilberry spruce forests in the middle taiga subzone, Rast. Resursy, 2014, vol. 50, pp. 25–30.

    Google Scholar 

  15. Zakonomernosti poluvekovoi dinamiki bioty devstvennoi taigi Severnogo Predural’ya (Trends in the Half-Century Dynamics of Biota in Virgin Taiga Forests of the Northern Cisural Region), Syktyvkar, 2000.

  16. Pochvy i pochvennyi pokrov Pechoro-Ilychskogo zapovednika (Severnyi Ural) (Soils and Soil Cover of the Pechora–Ilych Nature Reserve, the Northern Urals), Syktyvkar: Inst. Biol. Komi Nauch. Tsentra Ural. Otd. Ross. Akad. Nauk, 2013.

  17. Vickers, D. and Mahrt, L., Quality control and flux sampling problems for tower and aircraft data, J. Atmos. Oceanic Technol., 1997, vol. 14, pp. 512–526.

    Article  Google Scholar 

  18. Falg, E., Baldocchi, D., Olson, R., et al., Gap filling strategies for defensible annual sums of net ecosystems exchange, Agric. For. Meteorol., 2001, vol. 107, pp. 43–69.

    Article  Google Scholar 

  19. Greco, S. and Baldocchi, D., Seasonal variations of CO2 and water vapor exchange rates over a temperate deciduous forest, Glob. Change Biol., 1996, vol. 2, pp. 183–197.

    Article  Google Scholar 

  20. Novakovskiy, A.B. and Elsakov, V.V., Hydrometeorological database (HMDB) for practical research in ecology, Data Sci. J., 2014, vol. 13, pp. 57–63. https://doi.org/10.2481/dsj.IFPDA-10

    Article  Google Scholar 

  21. Chebakova, N.M., Vygodskaya, N.N., Arnet, A., et al., Energy–mass exchange and productivity of basic ecosystems in Siberia based on eddy covariance measurements: 2. Carbon exchange and productivity, Izv. Ross. Akad. Nauk, Ser. Biol., 2014, no. 1, pp. 65–75. https://doi.org/10.7868/S0002332914010044

  22. Kolari, P., Pumpanen, J., Rannik, U., et al., Carbon balance of different-aged Scots pine forest in southern Finland, Glob. Change Biol., 2004, vol. 10, pp. 1106–1119.

    Article  Google Scholar 

  23. Hollinger, D.Y., Goltz, S.M., Davidson, E.A., et al., Seasonal patterns and environmental control of carbon dioxide and water vapor exchange in an ecotonal boreal forest, Glob. Change Biol., 1999, vol. 5, pp. 891–902.

    Article  Google Scholar 

  24. Roser, C., Montagnani, L., Schulze, E.-D., et al., Net CO2 exchange rates in three different succession stages of “dark taiga” of central Siberia, Tellus, 2002, vol. 54, no. 5, pp. 642–654.

    Google Scholar 

  25. Suni, T., Berninger, F., Vesala, T., et al., Air temperature triggers the recovery of evergreen boreal forest photosynthesis in spring, Glob. Change Biol., 2003, no. 9, pp. 1410–1426.

  26. Arneth, A., Veenendaal, E.M., Best, C., et al., Water use strategies and ecosystem–atmosphere exchange of CO2 in two highly seasonal environments, Biogeosciences, 2006, vol. 3, pp. 421–437.

    Article  CAS  Google Scholar 

  27. Timokhina, A.V., Prokushkin, A.S., Onuchin, A.A., et al., Variability of ground CO2 concentration in the middle taiga subzone of the Yenisei region of Siberia, Russ. J. Ecol., 2015, vol. 46, no. 2, pp.43–151. https://doi.org/10.1134/S1067413615020125

    Article  CAS  Google Scholar 

  28. Ueyama, M., Iwata, H., Harazono, Y., et al., Growing season and spatial variations of carbon fluxes of Arctic and boreal ecosystems in Alaska (USA), Ecol. Appl., 2013, vol. 23, pp. 1798–1816.

    Article  Google Scholar 

  29. Chen, Z., Guirui, Y., Zhu, X., et al., Covariation between gross primary production and ecosystem respiration across space and the underlying mechanisms: A global synthesis, Agric. For. Meteorol., 2015, vol. 203, pp. 180–190. https://doi.org/10.1016/j.agrformet.2015.01.012

    Article  Google Scholar 

  30. Law, B.E., Ryan, M.G., and Anthoni, P.M., Seasonal and annual respiration of a ponderosa pine ecosystem, Glob. Change Biol., 1999, vol. 5, pp. 169–182.

    Article  Google Scholar 

  31. Makhnykina, A.V., Prokushkin, A.S., Menyailo, O.V., et al., The impact of climatic factors on CO2 emissions from soils of middle-taiga forests in Central Siberia: Emission as a function of soil temperature and moisture, Russ. J. Ecol., 2020, vol. 51, no. 1, pp. 46–56. https://doi.org/10.1134/S1067413620010063

    Article  CAS  Google Scholar 

  32. Osipov A.F. Effect of interannual difference in weather conditions of the growing season on the CO2 emission from the soil surface in the middle-taiga cowberry–lichen pine forest (Komi Republic), Euras. Soil Sci., 2018, vol. 51, no. 12, pp. 1419–1426.

    Article  Google Scholar 

  33. McCaughey, J.H., Pejam, M.R., Arain, M.A., and Cameron, D.A., Carbon dioxide and energy fluxes from a boreal mixedwood forest ecosystem in Ontario, Canada, Agric. For. Meteorol., 2006, vol. 140, pp. 79–96.

    Article  Google Scholar 

  34. Amiro, B.D., Barr, A.G., Black, T.A., et al., Carbon, energy and water fluxes at mature and disturbed forest sites, Saskatchewan, Canada, Agric. For. Meteorol., 2006, vol. 136, pp. 237–251. https://doi.org/10.1016/j.agrformet.2004.11.012

    Article  Google Scholar 

  35. Kasurinen, V., Alfredsen, K., Kolari, P., et al., Latent heat exchange in the boreal and arctic biomes, Glob. Change Biol., 2014, vol. 20, pp. 3439–3456.

    Article  Google Scholar 

Download references

Funding

This study was performed under the state budget theme assignment to the Institute of Biology, Komi Science Center, on the theme “Spatiotemporal dynamics of the structure and productivity of phytocenosis in forest and bog ecosystems in the northeast of European Russia” (project no. AAAA-A17-117122090014-8).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. V. Zagirova.

Ethics declarations

The authors declare that they have no conflict of interest.

Additional information

Translated by N. Gorgolyuk

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zagirova, S.V., Mikhailov, O.A. Ecosystem Exchange of Carbon Dioxide and Water in Cowberry–Lichen Pine Forest in the Middle Taiga Subzone of Eastern Europe. Russ J Ecol 52, 201–211 (2021). https://doi.org/10.1134/S1067413621030103

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1067413621030103

Keywords:

Navigation