Skip to main content
Log in

The Concept of Morphoniche in Evolutionary Ecology

  • Published:
Russian Journal of Ecology Aims and scope Submit manuscript

Abstract—The evolutionary-ecological concept of morphoniche is proposed where the morphoniche is regarded as part of the multidimensional ecological niche that characterizes the limits of phenotypic plasticity of individuals, cenopopulations, and taxocenes in the morphospace. The phenome—a morphofunctional “shell” of an individual—is the basic part of its ecological niche and a multifunctional “biological tool” allowing the individual to perform its generative, trophic, and environment-forming functions in the population and community. The phenome characterizes the morphophysiological habitus of an individual and serves as its personal morphoniche. Geometric morphometrics makes it possible to bring into correlation the locations of individual morphoniches in the common morphospace and evaluate coupled morphogenetic reactions of individuals to changes in aut- and synecological factors. The epigenetic system of a population parameterizes the potential morphospace, delimiting the fan of possible invariants of morphogenesis. The volume of population morphospace reflects morphogenetic reactions of a population to the range of local ecological factors and allows estimation of its realized morphoniche. An analysis of realized morphoniches over many years provides an estimate of the potential population morphoniche. Part of the community (taxocene) comprising cenopopulations of closely related sympatric species provides a model of the cenotic morphoniche. The ratios between the volumes of realized and potential morphoniches make it possible to evaluate the adaptive modification potential and optimality index of the realized morphoniches of individuals, cenopopulations, and taxocenes, the limits of their phenotypic plasticity, and the risk of an evolutionary-ecological crisis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. Read, A.F. and Clark, J.S., The next 20 years of ecology and evolution, Trends Ecol. Evol., 2006, vol. 21, no. 7, pp. 354–355.

    Article  PubMed  Google Scholar 

  2. Sutherland, W.J., Freckleton, R.P., Goodfray, H.Ch.J., et al., Identification of 100 fundamental ecological questions, Ecology, 2013, vol. 101, pp. 58–67.

    Article  Google Scholar 

  3. Zherikhin, V.V., Izbrannye trudy po paleoekologii i filotsenogenetike (Selected Works in Paleoecology and Phylocenogenetics), Moscow: KMK, 2003.

  4. Parmesan, C., Ecological and evolutionary responses to recent climate change, Annu. Rev. Ecol. Evol. Syst., 2006, vol. 37, pp. 637–669.

    Article  Google Scholar 

  5. Palkovacs, E.P. and Hendry, A.P., Eco-evolutionary dynamics: Intertwining ecological and evolutionary processes in contemporary time, F1000 Biol. Rep., 2010, vol. 2, no. 1, pp. 1–5. https://doi.org/10.3410/B2-1

    Article  PubMed  PubMed Central  Google Scholar 

  6. Pigliucci, M., Do we need an extended evolutionary synthesis?, Evolution, 2007, vol. 61, no. 2, pp. 2743–2749.

    Article  PubMed  Google Scholar 

  7. Dickins, T.E. and Rahman, Q., The extended evolutionary synthesis and the role of soft inheritance in evolution, Proc. R. Soc. Lond. B, 2012, vol. 279, pp. 2913–2921.

    Google Scholar 

  8. Laland, K.N., Uller, T., Feldman, M.W., et al., The extended evolutionary synthesis: Its structure, assumptions and predictions, Philos. Trans. R. Soc. B, 2015, vol. 282, pp. 1–14. https://doi.org/10.1098/rspb.2015.10

    Article  Google Scholar 

  9. Jablonka, E. and Raz, G., Transgenerational epigenetic inheritance: Prevalence, mechanisms, and implications for the study of heredity and evolution, Q. Rev. Biol., 2009, vol. 84, pp. 131–176.

    Article  PubMed  Google Scholar 

  10. Duncan, E.J., Gluckman, P.D., and Dearden, P.K., Epigenetics, plasticity and evolution: How do we link epigenetic change to phenotype?, J. Exp. Zool. B: Mol. Dev. Evol., 2014, vol. 322, pp. 208–220.

    Article  CAS  Google Scholar 

  11. Laland, K., Matthews, B., and Feldman, M.W., An introduction to niche construction theory, Evol. Ecol., 2016, vol. 30, pp. 191–202.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Burggren, W., Epigenetic inheritance and its role in evolutionary biology: Re-evaluation and new perspectives, Biology, 2016, vol. 5, no. 24, pp. 2–22.

    Article  Google Scholar 

  13. West-Eberhard, M.J., Developmental Plasticity and Evolution, Oxford: Oxford Univ. Press, 2003.

    Book  Google Scholar 

  14. Violle, C., Enquist, B.J., McGill, B.J., et al., The return of the variance: Intraspecific variability in community ecology, Trends Ecol. Evol., 2012, vol. 27, no. 4, pp. 244–252.

    Article  PubMed  Google Scholar 

  15. Rohlf, F.J. and Slice, D., Extensions of the Procrustes method for the optimal superimposition of landmarks, Syst. Biol., 1990, vol. 39, pp. 40–59.

    Google Scholar 

  16. Pavlinov, I.Ya. and Mikeshina, N.G., Principles and methods of geometric morphometrics, Zh. Obshch. Biol., 2002, vol. 63, no. 6, pp. 473–493.

    PubMed  Google Scholar 

  17. Zelditch, M.L., Swiderski, D.L., Sheets, H.D., and Fink, W.L., Geometric Morphometrics for Biologists: A Primer, New York: Elsevier, 2004.

    Google Scholar 

  18. Klingenberg, C.P., MorphoJ: An integrated software package for geometric morphometrics, Mol. Ecol. Resour., 2011, vol. 11, pp. 353–357.

    Article  PubMed  Google Scholar 

  19. Sheets, H.D. and Zelditch, M.L., Studying ontogenetic trajectories using resampling methods and landmark data, Hystrix, 2013, vol. 24, no. 1, pp. 67–73.

    Google Scholar 

  20. Vasil'ev, A.G., Vasil’eva, I.A., and Shkurikhin, A.O., Geometricheskaya morfometriya: ot teorii k praktike (Geometric Morphometrics: From Theory to Practice), Moscow: KMK, 2018.

  21. Grinnell, J., Field tests of theories concerning distributional control, Am. Nat., 1917, vol. 51, pp. 115–128.

    Article  Google Scholar 

  22. Elton, Ch., Animal Ecology, London: Sidwick & Jackson, 1927.

    Google Scholar 

  23. Hutchinson, G.E., Concluding remarks, Cold Spring Harbor Symp. Quant. Biol., 1957, vol. 22, pp. 415–427.

    Article  Google Scholar 

  24. Hutchinson, G.E., The niche: An abstractly inhabited hyper-volume, in The Ecological Theater and the Evolutionary Play, New Haven, 1965, pp. 26–78.

  25. Pianka, E.R., Evolutionary Ecology, New York: Harper and Row, 1978. Translated under the title Evolyutsionnaya ekologiya, Moscow, Mir, 1981.

  26. Odum, E.P., Basic Ecology, Philadelphia: Saunders, 1983. Translated under the title Ekologiya, Moscow: Mir, 1986.

  27. Levchenko, V.F., Modeli v teorii biologicheskoi evolyutsii (Models in the Theory of Biological Evolution), St. Petersburg: Nauka, 1993.

  28. Ozerskii, P.V., Hutchinson’s ecological niche concept: Duality and the way to eliminate it, in Funktsional’naya morfologiya, ekologiya i zhiznennye tsikly zhivotnykh: Nauchnye trudy kafedry zoologii (Animal Functional Morphology, Ecology, and Life Cycles: Scientific Papers of the Department of Zoology), St. Petersburg: TESSA, 2006, vol. 5, pp. 137–146.

  29. Günther, K., Über Evolutionfaktoren und die Bedeutung des egriffs “ökologische Lizenz” für die Erklärung von Formenerscheinungen in Tierreichs, in Ornithologie als biologische Wissenschafl. 28 Beiträgeals Festschrifl zum 60 Geburtstag von Erwin Stresemann (22 November, 1949), Heidelberg: C. Winter-Universitätsverlag, 1949, pp. 23–54.

  30. Starobogatov, Ya I. and Levchenko, V.F., An ecocentric concept of macroevolution, Zh. Obshch. Biol., 1993, vol. 54, no. 4, pp. 389–407.

    Google Scholar 

  31. Peterson, A.T., Soberon, L., Pearson, R.G., et al., Ecological Niches and Geographic Distributions, Levin, S.A. and Horn, H.S., Eds., Princeton, NJ: Princeton Univ. Press, 2011.

    Book  Google Scholar 

  32. Gause, G.F., The Struggle for Existence, New York, 1934.

    Book  Google Scholar 

  33. Park, T., Experimental studies of interspecies competition: 2. Temperature, humidity, and competition in two species of Tribolium, Physiol. Zool., 1954, vol. 27, no. 3, pp. 177–238.

    Article  Google Scholar 

  34. Van Valen, L., Morphological variation and width of ecological niche, Am. Nat., 1965, vol. 99, pp. 377–390.

    Article  Google Scholar 

  35. Bolnick, D., Ingram, T., Stutz, W.E., et al., Ecological release from interspecific competition leads to decoupled changes in population and individual niche width, Proc. R. Soc. Lond. B, 2010, vol. 277, pp. 1789–1797.

    Google Scholar 

  36. Levins, R., The limiting similarity, convergence, and divergence of coexisting species, Am. Nat., 1967, vol. 101, no. 921, pp. 377–385.

    Article  Google Scholar 

  37. Mouillot, D., Dumay, O., and Tomasini, J.A., Limiting similarity, niche filtering and functional diversity in costal lagoon fish communities, Estuar. Coast. Shelf Sci., 2007, vol. 71, pp. 443–456.

    Article  Google Scholar 

  38. Cornwell, W.K., Schwilk, D.W., and Ackerly, D.D., A trait-based test for habitat filtering: Convex hull volume, Ecology, 2006, vol. 87, no. 6, pp. 1465–1471.

    Article  PubMed  Google Scholar 

  39. Diamond, J.M., Assembly of species communities, in Ecology and Evolution of Communities, Cody, M.L. and Diamond, J.M., Eds., Cambridge, MA: Belknap Press, 1975.

    Google Scholar 

  40. Diamond, J.M. and May, R.M., Island biogeography and the design of natural reserves, in Theoretical Ecology: Principles and Applications, May, R.M., Ed., Oxford, UK: Blackwell, 1981, pp. 228–252

    Google Scholar 

  41. Simberloff, D.S., Colonization of islands by insects: Immigration, extinction, and diversity, in Diversity of Insect Faunas: Symposium of the Royal Entomological Society, London, Mound, L.A. and Waloff, N., Eds. London: Royal Entomological Society, 1978, no. 9, pp. 139–153.

  42. Connor, E.F. and Simberloff, D., The assembly of species communities: Chance or competition?, Ecology, 1979, vol. 60, pp. 1132–1140.

    Article  Google Scholar 

  43. Simberloff, D. and Boecklen, W., Santa Rosalia reconsidered: Size ratios and competition, Evolution, 1981, vol. 35, pp. 1206–1228.

    Article  PubMed  Google Scholar 

  44. Schoener, T.W., Field experiments on interspecific competition, Am. Nat., 1983, vol. 122, pp. 240–285.

    Article  Google Scholar 

  45. Ricklefs, R. and Travis, J., A morphological approach to the study of avian community organization, Auk, 1980, vol. 97, no. 2, pp. 321–338.

    Google Scholar 

  46. Ricklefs, R.E., Species richness and morphological diversity of passerine birds, Proc. Natl. Acad. Sci. U. S. A., 2012, vol. 109, pp. 14482–14487.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Moulton, M.P. and Pimm, S.L., The extent of competition in shaping an introduced avifauna, in Community Ecology, Diamond, J., Ed., New York: Harper & Row, 1986, pp. 60–97.

    Google Scholar 

  48. Swanson, H.K., Lysy, M., Power, M., et al., A new probabilistic method for quantifying n-dimensional ecological niches and niche overlap, Ecology, 2015, vol. 96, pp. 318–324.

    Article  PubMed  Google Scholar 

  49. Granot, I. and Belmaker, J., Niche breadth and species richness: Correlation strength, scale and mechanisms (meta-analysis), Glob. Ecol. Biogeogr., 2020, vol. 29, no. 1, pp. 159–170.

    Article  Google Scholar 

  50. Lewin, R., Santa Rosalia was a goat, Science, 1983, vol. 221, pp. 636–639.

    Article  CAS  PubMed  Google Scholar 

  51. Shenbrot, G.I., Ecological niche, interspecific competition, and community structure of terrestrial vertebrates, in Ekologicheskie, etologicheskie i evolyutsionnye aspekty organizatsii mnogovidovykh soobshchestv pozvonochnykh (Ecological, Ethological, and Evolutionary Aspects of Multispecies Community Organization in Vertebrates), Itogi Nauki Tekh., Ser. Zool. Pozv., vol. 14, Moscow: VINITI, 1986, pp. 5–70.

  52. Rogovin, K.A., Morphological divergence and community organization of terrestrial vertebrates, in Ekologicheskie, etologicheskie i evolyutsionnye aspekty organizatsii mnogovidovykh soobshchestv pozvonochnykh (Ecological, Ethological, and Evolutionary Aspects of Multispecies Community Organization in Vertebrates), Itogi Nauki Tekh., Ser. Zool. Pozv., vol. 14, Moscow: VINITI, 1986, pp. 71–126.

  53. Michalko, R. and Pekar, S., Niche partitioning and niche filtering jointly mediate the coexistence of three closely related spider species (Araneae, Philodromidae), Ecol. Entomol., 2015, vol. 40, pp. 22–33.

    Article  Google Scholar 

  54. Moreno, C.E., Arita, H.T., and Solis, L., Morphological assembly mechanisms in neotropical bat assemblages and ensembles within a landscape, Oecologia, 2006, vol. 149, pp. 133–140.

    Article  PubMed  Google Scholar 

  55. Bolnick, D.I., Svanback, R., Araujo, M.S., and Persson, L., Comparative support for the niche variation hypothesis that more generalized populations also are more heterogeneous, Proc. Natl. Acad. Sci. U. S. A., 2007, vol. 104, no. 24, pp. 10075–10079.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Stevens, R.D. and Willig, M.R., Community structure, abundance, and morphology, Oikos, 2000, vol. 88, pp. 48–56.

    Article  Google Scholar 

  57. Grinnell, J., A geographical study of the kangaroo rat in California, Zoology, 1922, vol. 24, no. 1, pp. 1–124.

    Google Scholar 

  58. MacArthur, R.H., The theory of the niche, in Population Biology and Evolution, Lewontin, R.C., Ed., Syracuse, NY: Syracuse Univ. Press., 1968, pp. 159–176.

    Google Scholar 

  59. Giller, P., Community Structure and the Niche, London: Chapman and Hall, 1984. Translated under the title Struktura soobshchestv i ekologicheskaya nisha, Moscow: Mir, 1988.

  60. Feinsinger, P., Spears, E.E., and Poole, R.W., A simple measure of niche breadth, Ecology, 1981, vol. 62, pp. 27–32.

    Article  Google Scholar 

  61. Schoener, T.W., Non-synchronous spatial overlap of lizards in patchy habitats, Ecology, 1970, vol. 51, pp. 408–418.

    Article  Google Scholar 

  62. Colwell, R.K. and Futuyma, D.J., On the measurement of niche breadth and overlap, Ecology, 1971, vol. 52, pp. 567–576.

    Article  PubMed  Google Scholar 

  63. Pianka, E.R., The structure of lizard communities, Annu. Rev. Ecol. Syst., 1973, vol. 4, pp. 53–74.

    Article  Google Scholar 

  64. Abrams, P., Some comments on measuring niche overlap, Ecology, 1980, vol. 61, pp. 44–49.

    Article  Google Scholar 

  65. Broennimann, O., Fitzpatrick, M.C., Pearman, P.B., et al., Measuring ecological niche overlap from occurrence and spatial environmental data, Glob. Ecol. Biogeogr., 2012, vol. 21, pp. 481–497.

    Article  Google Scholar 

  66. Hutchinson, D.E., Homage to Santa Rosalia, or why are there so many kinds of animals?, Am. Nat., 1959, vol. 93, pp. 145–159.

    Article  Google Scholar 

  67. Schoener, T.W., Size differences among sympatric, bird-eating hawks: A world-wide survey, in Ecological Communities: Conceptual Issues and the Evidence, Strong, D.R., Simberloff, D., Abele, L.G., Eds., Princeton, NJ: Princeton Univ. Press, 1984, pp. 254–279.

    Google Scholar 

  68. Ackerly, D.D. and Cornwell, W.K., A trait-based approach to community assembly: Partitioning of species trait values into within- and among community components, Ecol. Lett., 2007, vol. 10, no. 2, pp. 135–145.

    Article  CAS  PubMed  Google Scholar 

  69. Violle, C., Navas, M.-L., Vile, D., et al., Let the concept of trait be functional!, Oikos, 2007, vol. 116, pp. 882–892.

    Article  Google Scholar 

  70. Sampaio, A.L.A., Pagotto, J.P.A., and Goulart, E., Relationships between morphology, diet and spatial distribution: Testing the effects of intra- and interspecific morphological variations on the patterns of resource use in two neotropical cichlids, Neotrop. Ichthyol., 2013, vol. 11, no. 2, pp. 351–360.

    Article  Google Scholar 

  71. McGill, B.J., Enquist, B.J., Weiher, E., and Westoby, M., Rebuilding community ecology from functional traits, Trends Ecol. Evol., 2006, vol. 21, pp. 178–185.

    Article  PubMed  Google Scholar 

  72. Ricotta, C. and Moretti, M., CWM and Rao’s quadratic diversity: A unified framework for functional ecology, Oecologia, 2011, vol. 167, pp. 181–188.

    Article  PubMed  Google Scholar 

  73. Blonder, B., Hypervolume concepts in niche and trait-based ecology, Ecography, 2018, vol. 41, pp. 1441–1455.

    Article  Google Scholar 

  74. Pla, L., Casanoves, F., and Di Rienzo, J., Quantifying Functional Biodiversity, Dordrecht: Springer, 2012.

    Book  Google Scholar 

  75. Villéger, S., Brosse, S., Mouchet, M., et al., Functional ecology of fish: Current approaches and future challenges, Aquat. Sci., 2017, pp. 1–19. https://doi.org/10.1007/s00027-017-0546-z

  76. Foote, M., Contributions of individual taxa to overall morphological disparity, Paleobiology, 1993, vol. 19, pp. 403–419.

    Article  Google Scholar 

  77. Erwin, D.H., Disparity: Morphological pattern and developmental context, Palaeontology, 2007, vol. 50, pp. 57–73.

    Article  Google Scholar 

  78. Pavlinov, I.Ya., Morphological disparity: General concepts and basic characteristics, in Zoologicheskie issledovaniya: Sb. trudov Zoologicheskogo muzeya MGU (Zoological Studies: Collected Works of the Zoologica Museum, Moscow State University), Pavlinov, I.Ya and Kalyakin, M.V., Eds., Moscow: Mosk. Gos. Univ., 2008, pp. 343–388.

  79. Webb, C.O., Ackerly, D.D., McPeek, M.A., and Donoghue, M.J., Phylogenies and community ecology, Annu. Rev. Ecol. Syst., 2002, vol. 33, pp. 475–505.

    Article  Google Scholar 

  80. Maestri, R., Monteiro, L.R., Fornel, R., et al., Geometric morphometrics meets metacommunity ecology: Environment and lineage distribution affects spatial variation in shape, Ecography, 2018, vol. 41, pp. 90–100.

    Article  Google Scholar 

  81. Hutchinson, G.E., An Introduction to Population Ecology, New Haven, CT: Yale Univ. Press, 1978.

    Google Scholar 

  82. Soberon, J., Grinnellian and Eltonian niches and geographic distributions of species, Ecol. Lett., 2007, vol. 10, pp. 1115–1123.

    Article  PubMed  Google Scholar 

  83. Hirzel, A.H., Hausser, J., Chessel, D., and Perrin, N., Ecological-niche factor analysis: How to compute habitat-suitability maps without absence data?, Ecology, 2002, vol. 83, no. 7, pp. 2027–2036.

    Article  Google Scholar 

  84. Phillips, S.J., Anderson, R.P., and Schapire, R.E., Maximum entropy modeling of species geographic distributions, Ecol. Model., 2006, vol. 190, pp. 231–259.

    Article  Google Scholar 

  85. Polly, P.D., Lawing, A.M., Eronen, J.T., and Schnitzler, J., Processes of ecometric patterning: Modelling functional traits, environments, and clade dynamics in deep time, Biol. J. Linn. Soc., 2016, vol. 118, pp. 39–63.

    Article  Google Scholar 

  86. Ricklefs, R.E. and Miles, D.B., Ecological and evolutionary inferences from morphology: An ecological perspective, in Ecological Morphology: Integrative Organismal Biology, Wainwright, P.C. and Reilly, S.M., Eds., Chicago, IL: Univ. of Chicago Press, 1994, pp. 13–41.

    Google Scholar 

  87. Shvarts, S.S., Smirnov, V.S., and Dobrinskii, L.N., Metod morfofiziologicheskikh indikatorov v ekologii nazemnykh pozvonochnykh (The Method of Morphophysiological Indicators in the Ecology of Terrestrial Vertebrates), Sverdlovsk, 1968.

  88. Chaikovskii, Yu.V., Aktivnyi svyaznyi mir. Opyt teorii evolyutsii zhizni (The Active Coherent World: An Essay on the Evolution of Life), Moscow: KMK, 2008.

  89. Ozerskii, P.V., On formalization of the Elton–Odum ecological niche concept, in Funktsional’naya morfologiya, ekologiya i zhiznennye tsikly zhivotnykh (Animal Functional Morphology, Ecology, and Life Cycles), 2015, vol. 15, no. 1, pp. 4-73.

  90. Puzachenko, Yu.G. and Abramov, A.V., Morphological niches of small mustelids (Mustelidae) in the Baraba Lowland, in Teriofauna Rossii i sopredel’nykh territorii: Mat-ly mezhdun. soveshch. (Theriofauna of Russia and Neighboring Territories: Proc. Int. Conf.), Moscow: KMK, 2011 p. 385.

  91. Barnosky, A.D., Defining climate’s role in ecosystem evolution: Clues from late Quaternary mammals, Historical Biol., 1994, vol. 8, pp. 173–190.

    Article  Google Scholar 

  92. Fontaneto, D., Panisi, M., Mandrioli, M., et al., Estimating the magnitude of morphoscapes: How to measure the morphological component of biodiversity in relation to habitats using geometric morphometrics, Sci. Nat., 2017, vol. 104, no. 55, pp. 1–11. https://doi.org/10.1007/s00114-017-1475-3

    Article  CAS  Google Scholar 

  93. Barber, C.B., Dobkin, D.P., and Huhdanpaa, H.T., The quickhull algorithm for convex hulls, ACM Trans. Math. Software, 1996, vol. 22, no. 4, pp. 469–483. www.qhull.org.

    Article  Google Scholar 

  94. Blonder, B., Hypervolume. R package version 1.0.1.2019. https://cran.r-project.org/package=hypervolume.

  95. Damuth, J.D., Jablonski, D., Harris, R.M., et al., Taxon-free characterization of animal communities, in Terrestrial Ecosystems through Time: Evolutionary Paleoecology of Terrestrial Plants and Animals, Beherensmeyer, A.K., Damuth, J.D., DiMichele, W.A., Eds., Chicago, IL: Univ. of Chicago Press, 1992, pp. 183–203.

    Google Scholar 

  96. Hutchinson, G.E., The Ecological Theater and the Evolutionary Play, New Haven, CT: Yale Univ. Press, 1965.

    Google Scholar 

  97. Vasil'ev, A.G., Epigeneticheskie osnovy fenetiki: na puti k populyatsionnoi meronomii (Epigenetic Bases of Phenetics: On the Way to Population Meronomy), Yekaterinburg: Akademkniga, 2005.

  98. Alberch, P., Ontogenesis and morphological diversification, Am. Zool., 1980, vol. 20, pp. 653–667.

    Article  Google Scholar 

  99. Chase, J.M. and Leibold, M.A., Ecological Niches: Inking Classical and Contemporary Approaches, Chicago: Univ. of Chicago Press, 2003.

    Book  Google Scholar 

  100. Glotov, N.V., Genetic heterogeneity of natural populations in quantitative traits, Extended Abstract of Doctoral (Biol.) Dissertation, Leningrad: Leningr. Gos. Univ., 1983.

  101. Bezel', V.S., Ekologicheskaya toksikologiya: populyatsionnyi i biotsenoticheskii aspekty (Ecological Toxicology: Population and Biocenotic Approaches), Yekaterinburg: Goshchitskii, 2006.

  102. Rohlf, F.J., TpsDig2, Digitize Landmarks and Outlines, Version 2.17, Department of Ecology and Evolution, State University of New York at Stony Brook, 2013.

    Google Scholar 

  103. McGhee, G.R., Theoretical Morphology. The Concept and Its Applications, New York: Columbia Univ. Press, 1999.

    Google Scholar 

  104. Mitteroecker, P. and Gunz, P., Advances in geometric morphometrics, Evol. Biol., 2009, vol. 36, pp. 235–247.

    Article  Google Scholar 

  105. Hammer, Ø., Harper, D.A.T., and Ryan, P.D., PAST: Paleontological statistics software package for education and data analysis, Palaeontol. Electron., 2001, vol. 4, no. 1, pp. 1–9.

    Google Scholar 

  106. Sterratt, D.C., Package ‘geometry’. Version 0.4.5. Mesh Generation and Surface Tessellation. 2019. https://davidcsterratt.github.io/geometry.

  107. Shvarts, S.S., The principle of optimal phenotype, Zh. Obshch. Biol., 1968, vol. 29, no. 1, pp. 12–24.

    CAS  PubMed  Google Scholar 

  108. Efron, B. and Tibshirani, R.J., An Introduction to the Bootstrap, New York: Chapman & Hall, 1986.

    Google Scholar 

  109. Anderson, M.J. and Braak, C.J.F., Permutation tests for multifactorial analysis of variance, J. Stat. Comput. Simul., 2003, vol. 73, pp. 85–113.

    Article  Google Scholar 

  110. Vasil’ev, A.G., Vasil’eva, I.A., and Kourova, T.P., Analysis of coupled geographic variation of three shrew species from southern and northern Ural taxocenes, Russ. J. Ecol., 2015, vol. 46, no. 6, pp. 552–558.

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

The author is sincerely grateful to the anonymous reviewer for critical analysis of the manuscript and useful advice on improving its quality.

Funding

This study was performed under state assignment AAAA-A19-119031890087-7 to the Institute of Plant and Animal Ecology, Ural Branch, Russian Academy of Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. G. Vasil’ev.

Additional information

Translated by N. Gorgolyuk

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vasil’ev, A.G. The Concept of Morphoniche in Evolutionary Ecology. Russ J Ecol 52, 173–187 (2021). https://doi.org/10.1134/S1067413621030097

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1067413621030097

Keyword:

Navigation