Skip to main content
Log in

Algorithms for Modeling the Formation and Processing of Information in X-Ray Tomography of Foam Materials

  • X-RAY METHODS
  • Published:
Russian Journal of Nondestructive Testing Aims and scope Submit manuscript

Abstract—

Algorithms for modeling the spatial structure of foams for the formation of projections in X-ray computed tomography and subsequent reconstruction of the internal structure of the samples have been proposed. Algorithms are the basis for numerical models of the analyzed systems as applied to foam control. To demonstrate the capabilities of the developed algorithms, sinograms and results of reconstruction of the internal structure of foam samples with variation of their parameters were obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. Farhadi, S., Kafili, D., and Ziadloo, S., Review of aluminum foam applications in architecture, Eur. J. Eng. Sci. Technol., 2020, vol. 3, no. 1, pp. 62–70. https://doi.org/10.33422/ejest.v3i1.162

    Article  Google Scholar 

  2. Kausar, A., Advances in polymer-anchored carbon nanotube foam: a review, Polym.-Plast. Technol. Mater., 2019, vol. 58, no. 18, pp. 1965–1978. https://doi.org/10.1080/25740881.2019.1599945

    Article  CAS  Google Scholar 

  3. Suvorova, O.V. and Makarov, D.V., Foam glass and foam materials based on ash-slag wastes from thermal power plants, Glass Ceram., 2019, vol. 76, no. 5—6, pp. 188–193. https://doi.org/10.1007/s10717-019-00162-x

    Article  Google Scholar 

  4. Chen, K., Guo, L., and Wang, H., A review on thermal application of metal foam, Sci. China. Technol. Sci., 2020, pp. 1–22. https://doi.org/10.1007/s11431-020-1637-3

  5. Raj, A., Sathyan, D., and Mini, K.M., Physical and functional characteristics of foam concrete: A review, Constr. Build. Mat., 2019, vol. 221, pp. 787–799. https://doi.org/10.1016/j.conbuildmat.2019.06.052

    Article  Google Scholar 

  6. Fu, Y., Wang, X., Wang, L., and Li, Y., Foam concrete: A state of the art and state of the practice review, Adv. Mat. Sci. Eng., 2020, vol. 2020, Article ID: 6153602. https://doi.org/10.1155/2020/6153602

    Article  Google Scholar 

  7. Duarte, I., Fiedler, T., and Krstulović-Opara, L., and Vesenjak, M., Brief review on experimental and computational techniques for characterization of cellular metals, Metals, 2020, vol. 10, no. 6, article ID: 726. https://doi.org/10.3390/met10060726

    Article  Google Scholar 

  8. Spowage, A.C., Shacklock, A.P., Malcolm, A.A., May, S.L., Tong, L., and Kennedy, A.R., Development of characterisation methodologies for macroporous materials, J. Porous Mater., 2006, vol. 13, nos. 3—4, pp. 431–438. https://doi.org/10.1007/s10934-006-8042-1

    Article  CAS  Google Scholar 

  9. Peng, R., Yang, Y., Ju, Y., Mao, L., and Yang, Y., Computation of fractal dimension of rock pores based on gray CT images, Chin. Sci. Bull., 2011, vol. 56, No. 31, pp. 3346–3357. https://doi.org/10.1007/s11434-011-4683-9

    Article  Google Scholar 

  10. Umbach, C., and Middendorf, B., 3D structural analysis of construction materials using high-resolution computed tomography, Mater. Today: Proc., 2019, vol. 15, pp. 356–363. https://doi.org/10.1016/j.matpr.2019.04.094

    Article  Google Scholar 

  11. Abd Elrahman, M., El Madawy, M.E., Chung, S.Y., Majer, S., Youssf, O., and Sikora, P., An investigation of the mechanical and physical characteristics of cement paste incorporating different air entraining agents using X-ray micro-computed tomography, Crystals, 2020, vol. 10, No. 1, article ID: 23. https://doi.org/10.3390/cryst10010023

    Article  CAS  Google Scholar 

  12. Miedzińska, D., Niezgoda, T., and Gieleta, R., Numerical and experimental aluminum foam microstructure testing with the use of computed tomography, Comput. Mater. Sci., 2012, vol. 64, pp. 90–95. https://doi.org/10.1016/j.commatsci.2012.02.021

    Article  CAS  Google Scholar 

  13. Elmoutaouakkil, A., Fuchs, G., Bergounhon, P., Peres, R., and Peyrin, A., Three-dimensional quantitative analysis of polymer foams from synchrotron radiation x-ray microtomography, J. Phys. D: Appl. Phys., 2003, vol. 36, No. 10A, pp. A37–43. https://doi.org/10.1088/0022-3727/36/10A/308

    Article  CAS  Google Scholar 

  14. Lin, C.L., Videla, A.R., Yu, Q., and Miller, J.D., Characterization and analysis of porous, brittle solid structures by X ray micro computed tomography, JOM, 2010, vol. 62, No. 12, pp. 86–89. https://doi.org/10.1007/s11837-010-0188-2

    Article  Google Scholar 

  15. Utsunomiya, H. and Matsumoto, R., Deformation processes of porous metals and metallic foams, Proc. Mater. Sci., 2014, vol. 4, pp. 245–249.https://doi.org/10.1016/j.mspro.2014.07.614

    Article  CAS  Google Scholar 

  16. Yuasa, N., Kasai, Y., and Matsui, I., Inhomogeneous distribution of compressive strength from surface layer to interior of concrete in structures, Spec. Publ., 2000, vol. 192, pp. 269–282.

    Google Scholar 

  17. Wei, S., Yiqiang, C., Yunsheng, Z., and Jones, M.R., Characterization and simulation of microstructure and thermal properties of foamed concrete, Constr. Build. Mater., 2013, vol. 47, pp. 1278–1291. https://doi.org/10.1016/j.conbuildmat.2013.06.027

    Article  Google Scholar 

  18. Qian, R., Liu, G., Liu, Z., She, W., Qiao, H., and Zhang, Y., Investigations on three-dimensional pore-structure in cementitious materials using metal centrifugation porosimetry and simulation, Mater. Lett., 2021, vol. 282, article ID: 128684. https://doi.org/10.1016/j.matlet.2020.128684

    Article  CAS  Google Scholar 

  19. Wei, Y., Olsen, D.H., Miller, C.M., Wagner, K.B., Keyhani, A., Thadhani, N., and Zhou, M., Computational design of three-dimensional multi-constituent material microstructure sets with prescribed statistical constituent and geometric attributes, Multiscale Sci. Eng., 2020, vol. 2, pp. 7–19. https://doi.org/10.1007/s42493-020-00032-7

    Article  Google Scholar 

  20. Hsieh, J., Computed tomography: principles, design, artifacts, and recent advances. 3rd rev. ed., Bellingham: SPIE Press, 2015.

    Book  Google Scholar 

  21. Sarantites, D.G. and Sobotka, L.G., Computational templates for introductory nuclear science using Mathcad, Am. J. Phys., 2013, vol. 81, No. 1, pp. 44–49. https://doi.org/10.1119/1.4764079

    Article  CAS  Google Scholar 

  22. Croom, B.P., Jin, H., Mills, B., Carroll, J., Long, K., Brown, J., and Li, X., Damage mechanisms in elastomeric foam composites: Multiscale X-ray computed tomography and finite element analyses, Compos. Sci. Technol., 2019, vol. 169, pp. 195–202. https://doi.org/10.1016/j.compscitech.2018.11.025

    Article  CAS  Google Scholar 

  23. Jabarkhyl, S., Barigou, M., Zhu, S., Rayment, P., Lloyd, D.M., and Rossetti, D., Foams generated from viscous non-Newtonian shear-thinning liquids in a continuous multi rotor-stator device, Innovative Food Sci. Emerging Technol., 2020, vol. 59, article ID: 102231. https://doi.org/10.1016/j.ifset.2019.102231

    Article  Google Scholar 

  24. Osipov S.P., Yadrenkin I.G., Chakhlov S.V., Osipov O.S., Usachev E.Yu. Simulation modelling in digital radiography with allowance for spatial outlines of test objects, Russ. J. Nondestr. Testing, 2020, vol. 56, no. 8, pp. 647–660. https://doi.org/10.1134/S1061830920080082

    Article  Google Scholar 

  25. Osipov, S.P., Yadrenkin, I.G., Chakhlov, S.V., Osipov, O.S., Usachev, E.Yu., and Manushkin, A.A., Computational model of X-ray computed tomography with density estimation function, Defektoskopiya, 2021, no. 3, pp. 37–52.

  26. Feldkamp, L.A., Davis, L.C., and Kress, J.W., Practical cone-beam algorithm, J. Opt. Soc. Am. A, 1984, vol. 1, no. 6, pp. 612–619.

    Article  Google Scholar 

  27. Hiriyannaiah, H.P., X-ray computed tomography for medical imaging, IEEE Signal Process. Mag., 1997, vol. 14, no. 2, pp. 42–59. https://doi.org/10.1109/79.581370

    Article  Google Scholar 

  28. Kachelrieß, M., Knaup, M., and Kalender, W.A., Extended parallel backprojection for standard threedimensional and phase-correlated four-dimensional axial and spiral cone-beam CT with arbitrary pitch, arbitrary cone angle, and 100% dose usage, Med. Phys., 2004, vol. 31, No. 6, pp. 1623–1641. https://doi.org/10.1118/1.1755569

    Article  Google Scholar 

  29. Gribbon, K.T. and Bailey, D.G., A novel approach to real-time bilinear interpolation, Proc. DELTA 2004. Second IEEE Int. Workshop Electron. Des., Test, Appl., 2004, pp. 126–131. https://doi.org/10.1109/DELTA.2004.10055

  30. Shepp, L.A. and Logan, B.F., The Fourier reconstruction of a head section, IEEE Trans. Nucl. Sci., 1974, vol. 21, no. 3, pp. 21–43. https://doi.org/10.1109/TNS.1974.6499235

    Article  Google Scholar 

  31. Lehmhus, D., Vesenjak, M., de Schampheleire, S., and Fiedler, T., From stochastic foam to designed structure: Balancing cost and performance of cellular metals, Materials, 2017, vol. 10, No. 8, article ID: 922. https://doi.org/10.3390/ma10080922

    Article  CAS  Google Scholar 

  32. Du Plessis, A., Yadroitsava, I., and Yadroitsev, I., Effects of defects on mechanical properties in metal additive manufacturing: A review focusing on X-ray tomography insights, Mater. Des., 2020, vol. 187, article ID: 108385. https://doi.org/10.1016/j.matdes.2019.108385

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to S. P. Osipov, I. A. Prischepa or S. V. Chakhlov.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Osipov, S.P., Prischepa, I.A., Chakhlov, S.V. et al. Algorithms for Modeling the Formation and Processing of Information in X-Ray Tomography of Foam Materials. Russ J Nondestruct Test 57, 238–250 (2021). https://doi.org/10.1134/S1061830921030050

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1061830921030050

Keywords:

Navigation