Skip to main content
Log in

Preparation of Hydroxyapatite Nanoparticles from Natural Teeth

  • GENERAL FLAW DETECTION ISSUES
  • Published:
Russian Journal of Nondestructive Testing Aims and scope Submit manuscript

Abstract

Hydroxyapatite is the most important bio ceramic, due to its structure and chemical composition which is similar to bone and teeth. In this study, hydroxyapatite nanoparticles were prepared from natural teeth in two stages. Initially, the nano HA particles was performed by whole tooth and in the second stage, the tooth was divided into dentine and root and HA nanoparticles were prepared from both portions of teeth. At first, freshly extracted human teeth both (whole tooth and dentine and root) were calcined at 850°C and then, the effects of stirring time, surfactant and different temperatures were investigated. The XRD results confirmed that, the existence of hydroxyapatite phase in all samples. The phosphate bonding groups of \({\text{PO}}_{4}^{{3 - }}\) at 1470 and 669 cm–1 was confirmed by FTIR results. The FESEM results showed that, hydroxyapatite nano particle with the range of 29–46 nm at stirring time of 36 h with the addition of CTAB as a surfactant at 850°C was obtained without agglomeration and good dispersion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.
Fig. 13.

Similar content being viewed by others

REFERENCES

  1. Gunduz, O., Sahin, Y.M., Agathopoulos, S., Ben-Nissan, B., and Oktar, F., A new method for fabrication of nano hydroxyapatite and TCP from the sea snail cerithium vulgatum, J. Nanomater., 2014, vol. 2014, pp. 1–6.

    Article  Google Scholar 

  2. Jamiu, K.O., Danyuo, Y., Abdulazeez Baruwa, D., and Akeem, A.A., Synthesis and characterization of hydroxyapatite from bovine bone for production of dental implants, J. Appl. Biomater. Funct. Mater., 2019, vol. 1, pp. 1–7.

    Google Scholar 

  3. Ivanova, T.I., Frank-Kamenetskaya, O.V., Kol’tsov, A.B., and Ugolkov, V.L., Crystal structure of calcium-deficient carbonated hydroxyapatite, thermal decomposition, J. Solid State Chem., 2001, vol. 160, pp. 340–349.

    Article  CAS  Google Scholar 

  4. Kalita, S.J., Bhardwaj, A., and Bhatt, H.A., Nanocrystalline calcium phosphate ceramics in biomedical engineering, Mater. Sci. Eng. C, 2007, vol. 27, pp. 441–449.

    Article  CAS  Google Scholar 

  5. Murugan, R. and Ramakrishna, S., Development of nanocomposites for bone grafting, Compos. Sci. Technol., 2005, vol. 65, pp. 2385–2406.

    Article  CAS  Google Scholar 

  6. Riman, R.E., Suchanek, W.L., Byrappa, K., Chen, C.W., and Oakes, C., Solution synthesis of hydroxyapatite designer particulates, Solid State Ionics, 2002, vol. 151, pp. 393–402.

    Article  CAS  Google Scholar 

  7. Benaqqa, C., Chevalier, J., Saa daoui, M., and Fantozzi, G., Slow crack growth behaviour of hydroxyapatite ceramics, Biomaterials, 2005, vol. 26, pp. 6106–6112.

    Article  CAS  Google Scholar 

  8. Orlovskii, V.P., Komlev, V.S., and Barinov, S.M., Hydroxyapatite and hydroxyapatite-based ceramics, Inorg. Mater., 2002, vol. 38, pp. 973–984.

    Article  CAS  Google Scholar 

  9. Pasteris, J.D., Lack of oh in nanocrystalline apatite as a function of atomic order: Implications for bone and biomaterials, Biomaterials, 2004, vol. 25, pp. 229–238.

    Article  CAS  Google Scholar 

  10. Dorozhkina, E.I., and Dorozhkina, S.V., Mechanism of solid-state transformation of a calcium-deficient hydroxyapatite (CDHA) into biphasic calcium phosphate (BCP) at elevated temperatures, Chem. Mater., 2002, vol.14, pp. 4267–4272.

    Article  CAS  Google Scholar 

  11. Vallet-Regi, M., and González-Calbet, J.M., Calcium phosphates as substitution of bone tissues, Progr. Solid State Chem., 2004, vol. 32, pp. 1–31.

    Article  CAS  Google Scholar 

  12. Sugiyama, S., Ichii, T., Matsumoto, H., and Hayashi, H., Effect of calcination and sieving of calcium hydroxyapatite on ion-exchangeability with lead cation in the presence and absence of HCl, Adv. Environ. Res., 2002, vol. 62, pp.285–289.

    Article  Google Scholar 

  13. Zhang, H.G., Zhu, Q., and Wang, Y., Morphologically controlled synthesis of hydroxyapatite with partial substitution of fluorine, Chem. Mater., 2005, vol. 17, pp. 5824–5830.

    Article  CAS  Google Scholar 

  14. Kannan, S., Rebelo, A., and Ferreira, J.M.F., Novel synthesis and structural characterization of fluorine and chlorine co-substituted hydroxyapatites, J. Inorg. Biochem., 2006, vol. 100, pp. 1692–1697.

    Article  CAS  Google Scholar 

  15. Medvecky, L., Stulajterová, R., Parilák L., Trpčevska, J., and Barinov, S.M., Influence of Manganese on Stability and Particle Growth of Hydroxyapatite in Simulated Body Fluid, Colloids Surf. A: Physicochem. Eng. Aspects, 2006, vol. 281, pp. 221–229.

    Article  CAS  Google Scholar 

  16. 16 Dong, S.S, Jong,K.K., Dissolution of human teeth-derived hydroxyapatite, Annals Biomed. Eng., 2008, vol. 36, no. 1, pp. 132–140.

  17. Ola Saleh, M., Preparation of hydroxyapitate from natural resources literature review, GSJ, 2018, vol. 6, pp. 46–52.

    Google Scholar 

  18. Kim, T.G. and Park, B., Synthesis and growth mechanisms of one-dimensional strontium hydroxyapatite nanostructures, Inorg. Chem., 2005, vol. 44, pp. 9895–9901.

    Article  Google Scholar 

  19. Bhatnagar, V.M., Refinement of the synthetic hydroxyapatite cell parameters, Contr. Mineral. Petrol., 1969, vol. 22, pp. 375–378.

    Article  CAS  Google Scholar 

  20. Aoki, H., Kato, K., Ogiso, M., and Tabata, T., Studies on the application of apatite to dental materials, J. Dent. Eng., 1977, vol. 18, pp. 151–156.

    Google Scholar 

  21. Monroe, A.E., Ward, V., Ward, D.B., and McMullen, J., New calcium phosphate ceramic material for bone and tooth implants, J. Dent. Res., 1971, vol. 50, pp. 860–865.

    Article  CAS  Google Scholar 

  22. Manafi, S.A., Mirjalili, F., and Reshadi, R., Synthesis and evaluation of the bioactivity of fluorapatite-45s5 bioactive glass nanocomposite, Progr. Biomater., 2019, vol. 8, pp. 77–89.

    Article  CAS  Google Scholar 

  23. Zhang, H.G. and Zhu, Q., Surfactant-assited preparation of fluoride-substituted hydroxyapatite nanorods, Mater. Lett., 2005, vol. 59, pp. 3054–3058.

    Article  CAS  Google Scholar 

  24. Jones, F.H., Teeth and bones: Application of surface science to dental materials and related biomaterials, Surf. Sci. Rep., 2001, vol. 42, pp.75–205.

    Article  CAS  Google Scholar 

  25. Jarcho, M., Kay, J.F., Gumaer, K.I., Doremus, R.H., and Drobeck, H.P., Tissue, cellular, and subcellular events at a bone-ceramic hydroxyapatite interface, J. Bioeng., 1977, vol. 1, pp. 79–92.

    CAS  Google Scholar 

  26. Wang, Y., Zhang, S., Wei, K., Zhao, N., Chen, J., and Wang, X., Hydrothermal synthesis of hydroxyapatite nanopowders using cationic surfactant as a template, Mater. Lett., 2006, vol. 60, pp. 1486–1487.

    Google Scholar 

  27. Sadasivan, S., Khushalani, D., and Mann, S., Synthesis of calcium phosphate nanofilaments in reverse micelles, Chem. Mater., 2005, vol. 17, pp. 2765–2770.

    Article  CAS  Google Scholar 

  28. Prelot, B., and Zemb, T., Calcium phosphate precipitation in catanionic templates, Mater. Sci. Eng. C, 2005, vol. 25, pp. 553–559.

    Article  Google Scholar 

  29. Wei, K., Wang, Y., Lai, C., Ning, C., Wu, D., Wu, G., Zhao, N., Chen, X., and Ye, J., Synthesis and characterization of hydroxyapatite nanobelts and nanoparticles, Mater. Lett., 2005, vol. 59, pp. 220– 225.

    Article  CAS  Google Scholar 

  30. Zhang, Y., Zhou, L., Li, D., Xue, N., Xu, X., and Li, J., Oriented nano-structured hydroxyapatite from the template, Chem. Phys. Lett., 2003, vol. 376, pp. 493–497.

    Article  CAS  Google Scholar 

  31. Zhang, F., Zhou, Z., Yang, S., Mao, L., Chen, H., and Yu, X., Hydrothermal synthesis of hydroxyapatite nanorods in the presence of anionic starburst dendrimer, Mater. Lett., 2005, vol. 59, pp. 1422–1425.

    Article  CAS  Google Scholar 

  32. Lin, K., Chang, J., Cheng, R., and Ruan, M., Hydrothermal microemulsion synthesis of stoichiometric single crystal hydroxyapatite nanorods with mono-dispersion and narrow-size distribution, Mater. Lett., 2007, vol. 61, pp. 1683–1687.

    Article  CAS  Google Scholar 

  33. Liu, Y., Hou, D., and Wang, G., A simple wet chemical synthesis and characterization of hydroxyapatite nanorods, Mater. Chem. Phys., 2004, vol. 86, pp. 69–73.

    Article  CAS  Google Scholar 

  34. Cao, M., Wang, Y., Guo, C., Qi, Y., and Hu, C., Preparation of ultrahigh-aspect-ratio hydroxyapatite nanofibers in reverse micelles under hydrothermal conditions, Langmuir, 2004, vol. 20, pp. 4784–4786.

    Article  CAS  Google Scholar 

  35. Pang, Y.X. and Bao, X., Influence of temperature, ripening time and calcination on the morphology and crystallinity of hydroxyapatite nanoparticles, J. Eur. Ceram. Soc., 2003, vol. 23, pp.1697–1704.

    Article  CAS  Google Scholar 

  36. Ye, W. and Wang, X.X., Ribbon-like and rod-like hydroxyapatite crystals deposited on titanium surface with electrochemical method, Mater. Lett., 2007, vol. 17, pp. 405–409.

    Google Scholar 

  37. Nilesh, R., Rutika, B., Sudhindra, B., and Nilima, T., Comparative evaluation of nano-hydroxyapatite preparation and calcium sucrose phosphate on microhardness of deciduous teeth after iron drop exposure—an in-vitro study, J. Clin. Exp. Dent., 2017, vol. 9, no. 4, pp. 579–583.

    Google Scholar 

  38. Suat, O. and Mehmet, Y., Studies on characterization of bovine hydroxyapatite/CaTiO3 Biocomposites, Adv. Mater. Sci. Eng., 2016, vol. 2016, pp. 1–8.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fatemeh Mirjalili.

Ethics declarations

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fatemeh Mirjalili, Navabazam, A. & Samanizadeh, N. Preparation of Hydroxyapatite Nanoparticles from Natural Teeth. Russ J Nondestruct Test 57, 152–162 (2021). https://doi.org/10.1134/S1061830921020091

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1061830921020091

Keywords:

Navigation