Skip to main content
Log in

Tetra-Shelled Cr1.3Fe0.7O3 Hollow Sphere as an Efficient Catalyst for the CO2 Fixation Reaction Under Mild and Solvent-Free Conditions

  • Original Paper
  • Published:
Topics in Catalysis Aims and scope Submit manuscript

Abstract

The sequestration of atmospheric CO2 into value-added products is of great interest from economic and environmental perspectives. The tetra-shelled Cr1.3Fe0.7O3 hollow sphere as a heterogeneous catalyst was synthesized by a simple hydrothermal method followed by calcination at 600 °C. The synthesized tetra-shelled hollow spheres were characterized by several effective tools. The catalytic performance was studied for the cycloaddition reaction of CO2 with epoxides under solvent-free conditions. The reaction time, reaction temperature, CO2 pressure, and the catalyst amount were systematically studied. Under the best-experimented condition ( 0.02 g of the catalyst, 80 °C, 6 h, and 4 bar CO2 pressure), the catalyst demonstrated a broad substrate scope and functional group tolerance. Besides, the catalyst showed high recycling efficiency for five consecutive reaction cycles with no significant decline in activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Scheme 2
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Yoro KO, Daramola MO (2020) CO2 emission sources, greenhouse gases, and the global warming effect. In: Advances in Carbon Capture. Elsevier, pp 3–28

  2. Sadatshojaie A, Rahimpour MR (2020) CO2 emission and air pollution (volatile organic compounds, etc.)–related problems causing climate change. In: Current Trends and Future Developments on (Bio-) Membranes. Elsevier, pp 1–30

  3. Liu Q, Wu L, Jackstell R, Beller M (2015) Using carbon dioxide as a building block in organic synthesis. Nat Commun 6:5933

    Article  PubMed  CAS  Google Scholar 

  4. Francis A, Kumar H, Sudhakar K, Tahir M (2021) A review on recent developments in solar photoreactors for carbon dioxide conversion to fuels. J CO2 Util 47:101515

    Article  CAS  Google Scholar 

  5. Shaikh RR, Pornpraprom S, D’Elia V (2018) Catalytic strategies for the cycloaddition of pure, diluted, and waste CO2 to epoxides under ambient conditions. ACS Catal 8(1):419–450

    Article  CAS  Google Scholar 

  6. Aresta M, Dibenedetto A, Angelini A (2014) Catalysis for the valorization of exhaust carbon: from CO2 to chemicals, materials, and fuels. Technological use of CO2. Chem Rev 114(3):1709–1742

    Article  CAS  PubMed  Google Scholar 

  7. Bhanja P, Modak A, Bhaumik A (2018) Supported porous nanomaterials as efficient heterogeneous catalysts for CO2 fixation reactions. Chem Eur J 24(29):7278–7297

    Article  CAS  PubMed  Google Scholar 

  8. Tlili A, Blondiaux E, Frogneux X, Cantat T (2015) Reductive functionalization of CO2 with amines: an entry to formamide, formamidine and methylamine derivatives. Green Chem 17(1):157–168

    Article  CAS  Google Scholar 

  9. Kleij AW, North M, Urakawa A (2017) CO2 catalysis. ChemSusChem 10(6):1036–1038

    Article  CAS  PubMed  Google Scholar 

  10. Song Q-W, Zhou Z-H, He L-N (2017) Efficient, selective and sustainable catalysis of carbon dioxide. Green Chem 19(16):3707–3728

    Article  CAS  Google Scholar 

  11. Martín C, Fiorani G, Kleij AW (2015) Recent advances in the catalytic preparation of cyclic organic carbonates. ACS Catal 5(2):1353–1370

    Article  CAS  Google Scholar 

  12. Lopes EJ, Ribeiro AP, Martins LM (2020) New trends in the conversion of CO2 to cyclic carbonates. Catalysts 10(5):479

    Article  CAS  Google Scholar 

  13. Rasool MA, Pescarmona PP, Vankelecom IF (2019) Applicability of organic carbonates as green solvents for membrane preparation. ACS Sustain Chem Eng 7(16):13774–13785

    Article  CAS  Google Scholar 

  14. Buckler JN, Meek T, Banwell MG, Carr PD (2017) Total Synthesis of the Cyclic Carbonate-Containing Natural Product Aspergillusol B from d-(–)-Tartaric Acid. J Nat Prod 80(7):2088–2093

    Article  CAS  PubMed  Google Scholar 

  15. Vivek JP, Berry N, Papageorgiou G, Nichols RJ, Hardwick LJ (2016) Mechanistic insight into the superoxide induced ring opening in propylene carbonate based electrolytes using in situ surface-enhanced infrared spectroscopy. J Am Chem Soc 138(11):3745–3751

    Article  CAS  PubMed  Google Scholar 

  16. Shaikh A-AG, Sivaram S (1996) Organic carbonates. Chem Rev 96(3):951–976

    Article  CAS  PubMed  Google Scholar 

  17. Kamphuis AJ, Picchioni F, Pescarmona PP (2019) CO2-fixation into cyclic and polymeric carbonates: principles and applications. Green Chem 21(3):406–448

    Article  CAS  Google Scholar 

  18. Della Monica F, Maity B, Pehl T, Buonerba A, De Nisi A, Monari M, Grassi A, Rieger B, Cavallo L, Capacchione C (2018) [OSSO]-type iron (III) complexes for the low-pressure reaction of carbon dioxide with epoxides: Catalytic activity, reaction kinetics, and computational study. ACS Catal 8(8):6882–6893

    Article  CAS  Google Scholar 

  19. Yue S, Wang P, Hao X, Zang S (2017) Dual amino-functionalized ionic liquids as efficient catalysts for carbonate synthesis from carbon dioxide and epoxide under solvent and cocatalyst-free conditions. J CO2 Util 21:238–246

    Article  CAS  Google Scholar 

  20. Hong M, Kim Y, Kim H, Cho HJ, Baik M-H, Kim Y (2018) Scorpionate catalysts for coupling CO2 and epoxides to cyclic carbonates: A rational design approach for organocatalysts. J Org Chem 83(16):9370–9380

    Article  CAS  PubMed  Google Scholar 

  21. Xi Z, ZHANG Y, Xiangui Y, Jie Y, Gongying W (2010) Hydrated alkali metal halides as efficient catalysts for the synthesis of cyclic carbonates from CO2 and epoxides. Chinese J Catal 31(7):765–768

    Article  CAS  Google Scholar 

  22. Zhao L, Liu N, Huang H, Wang X, Huang X (2019) Synthesis of Propylene Carbonate from Carbon Dioxide through High Activity of Magnesium Oxide. J Chem Eng Japan 52(5):406–412

    Article  CAS  Google Scholar 

  23. Pal TK, De D, Bharadwaj PK (2020) Metal–organic frameworks for the chemical fixation of CO2 into cyclic carbonates. Coord Chem Rev 408:213173

    Article  CAS  Google Scholar 

  24. Lan D-H, Gong Y-X, Tan N-Y, Wu S-S, Shen J, Yao K-C, Yi B, Au C-T, Yin S-F (2018) Multi-functionalization of GO with multi-cationic ILs as high efficient metal-free catalyst for CO2 cycloaddition under mild conditions. Carbon 127:245–254

    Article  CAS  Google Scholar 

  25. Chowdhury AH, Bhanja P, Salam N, Bhaumik A, Islam SM (2018) Magnesium oxide as an efficient catalyst for CO2 fixation and N-formylation reactions under ambient conditions. Mol Catal 450:46–54

    Article  CAS  Google Scholar 

  26. Gawande MB, Pandey RK, Jayaram RV (2012) Role of mixed metal oxides in catalysis science—versatile applications in organic synthesis. Catal Sci Technol 2(6):1113–1125

    Article  CAS  Google Scholar 

  27. Yuan C, Wu HB, Xie Y, Lou XW (2014) Mixed transition-metal oxides: design, synthesis, and energy‐related applications. Angew Chem Int Ed 53(6):1488–1504

    Article  CAS  Google Scholar 

  28. Khalifeh R, Rajabzadeh M, Ebadi A (2019) Triple-Shell Hollow CuNiFe2O4 Spheres as Heterogeneous Catalyst for Selective Oxidation of Alcohols. ChemistrySelect 4(45):13089–13093

    Article  CAS  Google Scholar 

  29. Khalifeh R, Shahimoridi R, Rajabzadeh M (2019) Design and Synthesis of Novel Cage like CuFe2O4 Hollow Nanostructure as an Efficient Catalyst for Synthesis of 4, 4′-(aryl methylene) bis (3-methyl-1H-pyrazol-5-ol) s. Catal Lett 149(10):2864–2872

    Article  CAS  Google Scholar 

  30. Rajabzadeh M, Khalifeh R, Eshghi H, Bakavoli M (2018) A facile hydrothermal synthesis of novel hollow triple-shell CuNiFe2O4 nanospheres with robust catalytic performance in the Suzuki–Miyaura coupling reaction. J Catal 360:261–269

    Article  CAS  Google Scholar 

  31. Shahbazi H, Shokrollahi H, Tataei M (2018) Gel-casting of transparent magnesium aluminate spinel ceramics fabricated by spark plasma sintering (SPS). Ceram Int 44(5):4955–4960

    Article  CAS  Google Scholar 

  32. Korotcenkov G, Cho B (2017) Metal oxide composites in conductometric gas sensors: Achievements and challenges. Sensors Actuators B: Chem 244:182–210

    Article  CAS  Google Scholar 

  33. Saleki F, Mohammadi A, Moosavifard SE, Hafizi A, Rahimpour MR (2019) MOF assistance synthesis of nanoporous double-shelled CuCo2O4 hollow spheres for hybrid supercapacitors. J Colloid Interface Sci 556:83–91

    Article  CAS  PubMed  Google Scholar 

  34. Rezaei F, Khalifeh R, Amrollahi M (2020) Urchin-like double-shelled Pd–PdO/ZnO hollow sphere as an efficient catalyst for the Suzuki-Miyaura reaction. Materials Today Chemistry 18:100353

    Article  CAS  Google Scholar 

  35. Ray C, Pal T (2017) Recent advances of metal–metal oxide nanocomposites and their tailored nanostructures in numerous catalytic applications. J Mater Chem A 5(20):9465–9487

    Article  CAS  Google Scholar 

  36. Prasad D, Patil KN, Bhanushali JT, Nagaraja BM, Jadhav AH (2019) Sustainable fixation of CO2 into epoxides to form cyclic carbonates using hollow marigold CuCo2O4 spinel microspheres as a robust catalyst. Catal Sci Technol 9(16):4393–4412

    Article  CAS  Google Scholar 

  37. Tambe PR, Yadav GD (2018) Heterogeneous cycloaddition of styrene oxide with carbon dioxide for synthesis of styrene carbonate using reusable lanthanum–zirconium mixed oxide as catalyst. Clean Technol Environ Policy 20(2):345–356

    Article  CAS  Google Scholar 

  38. Wang C, Song Q, Zhang K, Liu P, Wang J, Wang J, Zhang H, Wang J (2019) Atomic zinc dispersed on graphene synthesized for active CO2 fixation to cyclic carbonates. Chem Commun 55(9):1299–1302

    Article  CAS  Google Scholar 

  39. Sun Z, Liao T, Kou L (2017) Strategies for designing metal oxide nanostructures. Sci China Mater 60(1):1–24

    Article  CAS  Google Scholar 

  40. Qi J, Lai X, Wang J, Tang H, Ren H, Yang Y, Jin Q, Zhang L, Yu R, Ma G (2015) Multi-shelled hollow micro-/nanostructures. Chem Soc Rev 44(19):6749–6773

    Article  CAS  PubMed  Google Scholar 

  41. Wang X, Feng J, Bai Y, Zhang Q, Yin Y (2016) Synthesis, properties, and applications of hollow micro-/nanostructures. Chem Rev 116(18):10983–11060

    Article  CAS  PubMed  Google Scholar 

  42. Khalifeh R, Niknam A (2020) Nanoparticle-Promoted Synthesis of Trisubstituted Imidazoles in a Green Medium. Org Prep Proced Int 52(2):91–98

    Article  CAS  Google Scholar 

  43. Rezaei F, Amrollahi MA, Khalifeh R (2020) Brønsted Acidic Dicationic Ionic Liquid Immobilized on Fe3O4@SiO2 Nanoparticles as an Efficient and Magnetically Separable Catalyst for the Synthesis of Bispyrazoles. ChemistrySelect 5(5):1760–1766

    Article  CAS  Google Scholar 

  44. Ebadi A, Rajabzadeh M, Khalifeh R (2019) Fe3O4@SiO2/EP. EN. EG. Cu as a Highly Efficient and Recoverable Catalytic System for Synthesis of 1, 4-Disubstituted 1, 2, 3‐Triazole Derivatives via the Click Reaction. ChemistrySelect 4(24):7211–7218

    Article  CAS  Google Scholar 

  45. Rajabzadeh M, Khalifeh R, Eshghi H, Sorouri M (2019) Design and preparation of hallow mesoporous silica spheres include CuO and its catalytic performance for synthesis of 1, 2, 3-triazole compounds via the click reaction in water. Catal Lett 149(4):1125–1134

    Article  CAS  Google Scholar 

  46. Rezaei F, Amrollahi MA, Khalifeh R (2019) Design and synthesis of Fe3O4@ SiO2/aza-crown ether-Cu (II) as a novel and highly efficient magnetic nanocomposite catalyst for the synthesis of 1, 2, 3-triazoles, 1-substituted 1H-tetrazoles and 5-substituted 1H-tetrazoles in green solvents. Inorg Chim Acta 489:8–18

    Article  CAS  Google Scholar 

  47. Khalifeh R, Karimzadeh F (2019) Copper nanoparticles supported on charcoal mediated one-pot three-component synthesis of N-substituted-2 H-indazoles via consecutive condensation C–N and N–N bond formation. Can J Chem 97(4):303–309

    Article  CAS  Google Scholar 

  48. Khalifeh R, Ghamari M (2016) A multicomponent synthesis of 2-amino-3-cyanopyridine derivatives catalyzed by heterogeneous and recyclable copper nanoparticles on charcoal. J Braz Chem Soc 27(4):759–768

    CAS  Google Scholar 

  49. Otroshchenko TP, Rodemerck U, Linke D, Kondratenko EV (2017) Synergy effect between Zr and Cr active sites in binary CrZrOx or supported CrOx/LaZrOx: Consequences for catalyst activity, selectivity and durability in non-oxidative propane dehydrogenation. J Catal 356:197–205

    Article  CAS  Google Scholar 

  50. Li P, Miser DE, Rabiei S, Yadav RT, Hajaligol MR (2003) The removal of carbon monoxide by iron oxide nanoparticles. Appl Catal B 43(2):151–162

    Article  CAS  Google Scholar 

  51. Yao X, Zhao R, Chen L, Du J, Tao C, Yang F, Dong L (2017) Selective catalytic reduction of NOx by NH3 over CeO2 supported on TiO2: Comparison of anatase, brookite, and rutile. Appl Catal B 208:82–93

    Article  CAS  Google Scholar 

  52. Wang J-Q, Dong K, Cheng W-G, Sun J, Zhang S-J (2012) Insights into quaternary ammonium salts-catalyzed fixation carbon dioxide with epoxides. Catal Sci Technol 2(7):1480–1484

    Article  CAS  Google Scholar 

  53. Heldebrant DJ, Yonker CR, Jessop PG, Phan L (2008) Organic liquid CO2 capture agents with high gravimetric CO2 capacity. Energy Environ Sci 1(4):487–493

    CAS  Google Scholar 

  54. Chen F, Liu N, Dai B (2017) Iron (II) bis-cnn pincer complex-catalyzed cyclic carbonate synthesis at room temperature. ACS Sustain Chem Eng 5(10):9065–9075

    Article  CAS  Google Scholar 

  55. Zhou H, Wang Y-M, Zhang W-Z, Qu J-P, Lu X-B (2011) N-Heterocyclic carbene functionalized MCM-41 as an efficient catalyst for chemical fixation of carbon dioxide. Green Chem 13(3):644–650

    Article  CAS  Google Scholar 

  56. Kurisingal JF, Rachuri Y, Gu Y, Kim G-H, Park D-W (2019) Binary metal-organic frameworks: Catalysts for the efficient solvent-free CO2 fixation reaction via cyclic carbonates synthesis. Appl Catal A: Gen 571:1–11

    Article  CAS  Google Scholar 

  57. Ravi S, Puthiaraj P, Ahn W-S (2017) Cyclic carbonate synthesis from CO2 and epoxides over diamine-functionalized porous organic frameworks. J CO2 Util 21:450–458

    Article  CAS  Google Scholar 

  58. Liu M-P, Luo Y-P, Xu L, Sun L, Du H-B (2016) Hollow-structured Si/SiC@ C nanospheres as highly active catalysts for cycloaddition of epoxides with CO 2 under mild conditions. Dalton Trans 45(6):2369–2373

    Article  CAS  PubMed  Google Scholar 

  59. Ding M, Chen S, Liu XQ, Sun LB, Lu J, Jiang HL (2017) Metal–Organic Framework-Templated Catalyst: Synergy in Multiple Sites for Catalytic CO2 Fixation. ChemSusChem 10(9):1898–1903

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge financial support from the research council of Shiraz University of Technology and the Yazd university research council.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Reza Khalifeh or Mohammad Ali Amrollahi.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rezaei, F., Khalifeh, R. & Amrollahi, M.A. Tetra-Shelled Cr1.3Fe0.7O3 Hollow Sphere as an Efficient Catalyst for the CO2 Fixation Reaction Under Mild and Solvent-Free Conditions. Top Catal (2021). https://doi.org/10.1007/s11244-021-01464-7

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11244-021-01464-7

Keywords

Navigation