Skip to main content

Advertisement

Log in

Carbon Source Applied in Enrichment Stage of Mixed Microbial Cultures Limits the Substrate Adaptability for PHA Fermentation Using the Renewable Carbon

  • Original Article
  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Suitability of different substrates for enriched mixed microbial cultures (MMCs) is of importance to the polyhydroxyalkanoate (PHA) fermentation using renewable carbon. In this study, three enriched MMCs were evaluated for their fermentation features and kinetics with different carbon sources (sodium acetate, glucose, or starch). The results showed that the highly specific bacterial community composition was developed depending on the applied carbon source. Correspondence analysis suggested that the genus affiliated in Gammaproteobacteria_unclassified was related to 3-hydroxybutyrate (HB) synthesis in acetate-fed MMC (relative abundance of 38%) and glucose-fed MMC (relative abundance of 76.7%), whereas Vibrio genus was related to 3-hydroxyvalerate (HV) production in glucose-fed MMC (relative abundance of 0.4%) and starch-fed MMC (relative abundance of 94.6%). The acetate-fed MMC could not use glucose and starch as fermentation carbon sources, showing the limitation of microbial species developed with the specific metabolic substrate. Glucose-fed MMC produced the highest PHA cell content of 64.2% cell dry weight when using sodium acetate as the fermentation carbon. Glucose-fed MMC showed wide resilience and adaptation to various carbon sources. When actual landfill leachate was used for fermentation by glucose-fed MMC, maximum PHA cell content of 45.5% cell dry weight and the PHA volumetric productivity of 0.265 g PHA/(L·h) were obtained. This study suggested carbon sources applied in the MMC enrichment stage had a significant influence on utilization of carbon in the fermentation stage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Availability of Data and Material

The datasets used or analyzed during the current study are available from the corresponding author on reasonable request.

Code Availability

The raw sequence data of sludge samples was submitted to NCBI sequence read archive database (PRJNA707648).

References

  1. Liu, F., Li, J., & Zhang, X. L. (2019). Bioplastic production from wastewater sludge and application. IOP conference series. Earth and environmental science, 344(1), 12071.

    Article  Google Scholar 

  2. Raza, Z. A., Abid, S., & Banat, I. M. (2018). Polyhydroxyalkanoates: characteristics, production, recent developments and applications. International Biodeterioration & Biodegradation, 126, 45–56.

    Article  CAS  Google Scholar 

  3. Andrady, A. L. (2011). Microplastics in the marine environment. Marine Pollution Bulletin, 62(8), 1596–1605.

    Article  CAS  Google Scholar 

  4. Gangadoo, S., Owen, S., Rajapaksha, P., Plaisted, K., Cheeseman, S., Haddara, H., Truong, V. K., Ngo, S. T., Vu, V. V., Cozzolino, D., Elbourne, A., Crawford, R., Latham, K., & Chapman, J. (2020). Nano-plastics and their analytical characterisation and fate in the marine environment: from source to sea. Science of the Total Environment, 732, 138792.

    Article  CAS  Google Scholar 

  5. Mannina, G., Presti, D., Montiel-Jarillo, G., Carrera, J., & Suárez-Ojeda, M. E. (2020). Recovery of polyhydroxyalkanoates (PHAs) from wastewater: a review. Bioresource Technology, 297, 122478.

    Article  CAS  Google Scholar 

  6. Aramvash, A., Moazzeni, Z. F., & Gholami, B. N. (2018). Comparison of different solvents for extraction of polyhydroxybutyrate from Cupriavidus necator. Engineering in Life Sciences, 18(1), 20–28.

    Article  CAS  Google Scholar 

  7. Wijeyekoon, S., Carere, C. R., West, M., Nath, S., & Gapes, D. (2018). Mixed culture polyhydroxyalkanoate (PHA) synthesis from nutrient rich wet oxidation liquors. Water Research, 140, 1–11.

    Article  CAS  Google Scholar 

  8. Mitra, R., Xu, T., Xiang, H., & Han, J. (2020). Current developments on polyhydroxyalkanoates synthesis by using halophiles as a promising cell factory. Microbial Cell Factories, 19(1), 86.

    Article  Google Scholar 

  9. Tu, W., Zou, Y., Wu, M., & Wang, H. (2020). Reducing the effect of non-volatile fatty acids (non-VFAs) on polyhydroxyalkanoates (PHA) production from fermented thermal-hydrolyzed sludge. International Journal of Biological Macromolecules, 155, 1317–1324.

    Article  CAS  Google Scholar 

  10. Duque, A. F., Oliveira, C. S. S., Carmo, I. T. D., Gouveia, A. R., Pardelha, F., Ramos, A. M., & Reis, M. A. M. (2014). Response of a three-stage process for PHA production by mixed microbial cultures to feedstock shift: impact on polymer composition. New Biotechnology, 31(4), 276–288.

    Article  CAS  Google Scholar 

  11. Valentino, F., Gottardo, M., Micolucci, F., Pavan, P., Bolzonella, D., Rossetti, S., & Majone, M. (2018). Organic fraction of municipal solid waste recovery by conversion into added-value polyhydroxyalkanoates and biogas. ACS Sustainable Chemistry & Engineering, 6(12), 16375–16385.

    Article  CAS  Google Scholar 

  12. Chang, H., Chang, W., & Tsai, C. (2012). Synthesis of poly(3-hydroxybutyrate/3-hydroxyvalerate) from propionate-fed activated sludge under various carbon sources. Bioresource Technology, 113, 51–57.

    Article  CAS  Google Scholar 

  13. Moralejo-Gárate, H., Kleerebezem, R., Mosquera-Corral, A., Campos, J. L., Palmeiro-Sánchez, T., & van Loosdrecht, M. C. M. (2014). Substrate versatility of polyhydroxyalkanoate producing glycerol grown bacterial enrichment culture. Water Research, 66, 190–198.

    Article  Google Scholar 

  14. Beun, J. J., Dircks, K., Van Loosdrecht, M. C., & Heijnen, J. J. (2002). Poly-beta-hydroxybutyrate metabolism in dynamically fed mixed microbial cultures. Water Research, 36(5), 1167–1180.

    Article  CAS  Google Scholar 

  15. Cui, Y., Gong, X., Shi, Y., & Wang, Z. D. (2017). Salinity effect on production of PHA and EPS by Haloferax mediterranei. RSC Advances, 7(84), 53587–53595.

    Article  CAS  Google Scholar 

  16. Ciggin, A. S., Rossetti, S., Majone, M., & Orhon, D. (2013). Extent of intracellular storage in single and dual substrate systems under pulse feeding. Environmental Science and Pollution Research, 20(3), 1225–1238.

    Article  CAS  Google Scholar 

  17. Cui, Y., Zhang, H., Lu, P., & Peng, Y. (2016). Effects of carbon sources on the enrichment of halophilic polyhydroxyalkanoate-storing mixed microbial culture in an aerobic dynamic feeding process. Scientific Reports, 6(1), 30766.

  18. Kim, D., Ryu, H., Kim, M., Kim, J., & Lee, S. (2007). Enhancing struvite precipitation potential for ammonia nitrogen removal in municipal landfill leachate. Journal of Hazardous Materials, 146(1-2), 81–85.

    Article  CAS  Google Scholar 

  19. APHA. (1998). Standard methods for the examination of water and wastewater (twentieth ed.). American Public Health Association.

  20. Boe, K., Batstone, D. J., & Angelidaki, I. (2007). An innovative online VFA monitoring system for the anerobic process, based on headspace gas chromatography. Biotechnology and Bioengineering, 96(4), 712–721.

    Article  CAS  Google Scholar 

  21. Dionisi, D., Beccari, M., Di Gregorio, S., Majone, M., Papini, M. P., & Vallini, G. (2005). Storage of biodegradable polymers by an enriched microbial community in a sequencing batch reactor operated at high organic load rate. Journal of Chemical Technology & Biotechnology, 80(11), 1306–1318.

    Article  CAS  Google Scholar 

  22. Wen, Q., Liu, B., Li, F., & Chen, Z. (2020). Substrate strategy optimization for polyhydroxyalkanoates producing culture enrichment from crude glycerol. Bioresource Technology, 311, 123516.

    Article  CAS  Google Scholar 

  23. Sabapathy, P. C., Devaraj, S., Meixner, K., Anburajan, P., Kathirvel, P., Ravikumar, Y., Zabed, H. M., & Qi, X. (2020). Recent developments in Polyhydroxyalkanoates (PHAs) production -a review. Bioresource Technology, 306, 123132.

    Article  CAS  Google Scholar 

  24. Johnson, K., Jiang, Y., Kleerebezem, R., Muyzer, G., & van Loosdrecht, M. C. M. (2009). Enrichment of a mixed bacterial culture with a high polyhydroxyalkanoate storage capacity. Biomacromolecules, 10(4), 670–676.

    Article  CAS  Google Scholar 

  25. Palmeiro-Sánchez, T., Fra-Vázquez, A., Rey-Martínez, N., Campos, J. L., & Mosquera-Corral, A. (2016). Transient concentrations of NaCl affect the PHA accumulation in mixed microbial culture. Journal of Hazardous Materials, 306, 332–339.

    Article  Google Scholar 

  26. Sruamsiri, D., Thayanukul, P., & Suwannasilp, B. B. (2020). In situ identification of polyhydroxyalkanoate (PHA)-accumulating microorganisms in mixed microbial cultures under feast/famine conditions. Scientific Reports, 10(1), 3752.

    Article  CAS  Google Scholar 

  27. Sasidharan, R. S., Bhat, S. G., & Chandrasekaran, M. (2015). Biocompatible polyhydroxybutyrate (PHB) production by marine Vibrio azureus BTKB33 under submerged fermentation. Annals of Microbiology, 65(1), 455–465.

    Article  CAS  Google Scholar 

  28. Kadouri, D., Jurkevitch, E., & Okon, Y. (2003). Poly β-hydroxybutyrate depolymerase (PhaZ) in Azospirillum brasilense and characterization of a phaZ mutant. Archives of Microbiology, 180(5), 309–318.

    Article  CAS  Google Scholar 

  29. Bayon-Vicente, G., Wattiez, R., & Leroy, B. (2020). Global proteomic analysis reveals high light intensity adaptation strategies and polyhydroxyalkanoate production in Rhodospirillum rubrum cultivated with acetate as carbon source. Frontiers in Microbiology, 11, 464.

  30. Xia, Y., Kong, Y., Thomsen, T. R., & Halkjær Nielsen, P. (2008). Identification and ecophysiological characterization of epiphytic protein-hydrolyzing Saprospiraceae (“Candidatus Epiflobacter” spp.) in activated sludge. Applied and Environmental Microbiology, 74(7), 2229–2238.

    Article  CAS  Google Scholar 

  31. Zhang, L., Fu, G., & Zhang, Z. (2019). Simultaneous nutrient and carbon removal and electricity generation in self-buffered biocathode microbial fuel cell for high-salinity mustard tuber wastewater treatment. Bioresource Technology, 272, 105–113.

    Article  CAS  Google Scholar 

  32. Yin, Y., Sun, J., Liu, F., & Wang, L. (2019). Effect of nitrogen deficiency on the stability of aerobic granular sludge. Bioresource Technology, 275, 307–313.

    Article  CAS  Google Scholar 

  33. Hong, J., Song, H., Moon, Y., Hong, Y., Bhatia, S. K., Jung, H., et al. (2019). Polyhydroxybutyrate production in halophilic marine bacteria Vibrio proteolyticus isolated from the Korean peninsula. Bioprocess and Biosystems Engineering, 42(4), 603–610.

    Article  CAS  Google Scholar 

  34. Zhou, J., Cai, M., Jiang, T., Zhou, W., Shen, W., Zhou, X., & Zhang, Y. (2014). Mixed carbon source control strategy for enhancing alginate lyase production by marine Vibrio sp. QY102. Bioprocess and Biosystems Engineering, 37(3), 575–584.

    Article  CAS  Google Scholar 

  35. Huang, L., Chen, Z., Wen, Q., Zhao, L., Lee, D., Yang, L., et al. (2018). Insights into Feast-Famine polyhydroxyalkanoate (PHA)-producer selection: microbial community succession, relationships with system function and underlying driving forces. Water Research, 131, 167–176.

    Article  CAS  Google Scholar 

  36. Li, D., Yin, F., & Ma, X. (2020). Towards biodegradable polyhydroxyalkanoate production from wood waste: using volatile fatty acids as conversion medium. Bioresource Technology, 299, 122629.

    Article  CAS  Google Scholar 

  37. Ling, C., Qiao, G., Shuai, B., Olavarria, K., Yin, J., Xiang, R., et al. (2018). Engineering NADH/NAD+ ratio in Halomonas bluephagenesis for enhanced production of polyhydroxyalkanoates (PHA). Metabolic Engineering, 49, 275–286.

    Article  CAS  Google Scholar 

  38. Karahan, Ö., van Loosdrecht, M. C. M., & Orhon, D. (2006). Modeling the utilization of starch by activated sludge for simultaneous substrate storage and microbial growth. Biotechnology and Bioengineering, 94(1), 43–53.

    Article  CAS  Google Scholar 

  39. Renou, S., Givaudan, J. G., Poulain, S., Dirassouyan, F., & Moulin, P. (2008). Landfill leachate treatment: review and opportunity. Journal of Hazardous Materials, 150(3), 468–493.

    Article  CAS  Google Scholar 

  40. Pardelha, F., Albuquerque, M. G. E., Reis, M. A. M., Dias, J. M. L., & Oliveira, R. (2012). Flux balance analysis of mixed microbial cultures: application to the production of polyhydroxyalkanoates from complex mixtures of volatile fatty acids. Journal of Biotechnology, 162(2-3), 336–345.

    Article  CAS  Google Scholar 

Download references

Funding

This study was supported by the National Natural Science Foundation of China (Project No. 51878010) and Great Wall scholar program of the Beijing municipal high-level faculty support (CIT&TCD20190310).

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: J. Zhao, Y. W. Cui; data curation: J. Zhao, H. Y. Zhang; formal analysis and investigation: J. Zhao, H. Y. Zhang, Z. L. Gao; methodology: Y. W. Cui; supervision: Y. W. Cui; writing – original draft: H. Y. Zhang, J. Zhao; writing – review and editing: J. Zhao, Y. W. Cui, H. Y. Zhang, Z. L. Gao.

Corresponding author

Correspondence to You-Wei Cui.

Ethics declarations

Ethical Approval

Not applicable.

Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

ESM 1

(PDF 145 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, J., Cui, YW., Zhang, HY. et al. Carbon Source Applied in Enrichment Stage of Mixed Microbial Cultures Limits the Substrate Adaptability for PHA Fermentation Using the Renewable Carbon. Appl Biochem Biotechnol 193, 3253–3270 (2021). https://doi.org/10.1007/s12010-021-03587-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-021-03587-9

Keywords

Navigation