Skip to main content
Log in

Gluing higher-topological-type semiclassical states for nonlinear Schrödinger equations

  • Published:
Annali di Matematica Pura ed Applicata (1923 -) Aims and scope Submit manuscript

Abstract

In Chen and Wang (Calc Var Part Differ Equ 56:1–26, 2017), we show that, if \(\epsilon >0\) is small enough, then there exists a sequence of semiclassical states of higher topological type localized at a local minimum set of the potential V for the semiclassical nonlinear Schrödinger equation

$$\begin{aligned} -\epsilon ^2\Delta v+V(x)v=|v|^{p-2}v,\ v\in H^1\left( {\mathbb{R}}^N\right) . \end{aligned}$$

In this paper, we consider a situation where V has multiple isolated local minimum sets. We show that as \(\epsilon \rightarrow 0,\) there exist multi-bump solutions of this equation being concentrated at those given local minimum sets while at the same time each bump behaves as a higher-topological-type solution in one local minimum set as aforementioned. Thus, the multi-bump solutions given here are constructed by gluing a sum of higher-topological-type solutions localized in separated local minimal sets of the potential.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alves, C.O.: Multiplicity of multi-bump type nodal solutions for a class of elliptic problems in \({\mathbb{R}}^N\). Topol. Methods Nonlinear Anal. 34(2), 231–250 (2009)

    Article  MathSciNet  Google Scholar 

  2. Ambrosetti, A., Badiale, M., Cingolani, S.: Semiclassical states of nonlinear Schrödinger equations. Arch. Ration. Mech. Anal. 140, 285–300 (1997)

    Article  Google Scholar 

  3. Ambrosetti, A., Malchiodi, A.: Perturbation Methods and Semilinear Elliptic Problem on \({\mathbb{R}}^N\), Progress in Mathematics, vol. 240. Birkhäuser Verlag, Basel (2006)

    MATH  Google Scholar 

  4. Ambrosetti, A., Malchiodi, A., Secchi, S.: Multiplicity results for some nonlinear Schrödinger equations with potentials. Arch. Ration. Mech. Anal. 159, 253–271 (2001)

    Article  MathSciNet  Google Scholar 

  5. Bartsch, T., Pankov, A., Wang, Z.-Q.: Nonlinear Schrödinger equations with steep potential well. Commun. Contemp. Math. 3, 549–569 (2001)

    Article  MathSciNet  Google Scholar 

  6. Bartsch, T., Wang, Z.-Q.: Existence and multiplicity results for some superlinear elliptic problems on \(R^N\). Commun. Part. Differ. Equ. 20, 1725–1741 (1995)

    Article  Google Scholar 

  7. Byeon, J., Jeanjean, L.: Multi-peak standing waves for nonlinear Schrödinger equations with a general nonlinearity. Discrete Contin. Dyn. Syst. 19(2), 255–269 (2007)

    Article  MathSciNet  Google Scholar 

  8. Byeon, J., Wang, Z.-Q.: Standing waves with a critical frequency for nonlinear Schrödinger equations. Arch. Ration. Mech. Anal. 165, 295–316 (2002)

    Article  MathSciNet  Google Scholar 

  9. Byeon, J., Wang, Z.-Q.: Standing waves with a critical frequency for nonlinear Schrödinger equations II. Calc. Var. Part. Differ. Equ. 18, 207–219 (2003)

    Article  Google Scholar 

  10. Cerami, G., Passaseo, D., Solimini, S.: Infinitely many positive solutions to some scalar field equations with nonsymmetric coefficients. Commun. Pure Appl. Math. 66, 372–413 (2013)

    Article  MathSciNet  Google Scholar 

  11. Chen, S., Wang, Z.-Q.: Localized nodal solutions of higher topological type for semiclassical nonlinear Schrödinger equations. Calc. Var. Part. Differ. Equ. 56, 1–26 (2017)

    Article  Google Scholar 

  12. Coti Zelati, V., Rabinowitz, P.H.: Homoclinic orbits for second order Hamiltonian systems possessing superquadratic potentials. J. Am. Math. Soc. 4, 693–727 (1991)

    Article  MathSciNet  Google Scholar 

  13. Coti Zelati, V., Rabinowitz, P.H.: Homoclinic type solutions for a semilinear elliptic PDE on \({\mathbb{R}}^n\). Commun. Pure Appl. Math. 45, 1217–1269 (1992)

    Article  Google Scholar 

  14. Del Pino, M., Felmer, P.: Local mountain passes for semilinear elliptic problems in unbounded domains. Calc. Var. Part. Differ. Equ. 4, 121–137 (1996)

    Article  MathSciNet  Google Scholar 

  15. Del Pino, M., Felmer, P.: Multi-peak bound states for nonlinear Schrödinger equations. Ann. Inst. H. Poincaré Anal. Non Linéaire 15, 127–149 (1998)

    Article  MathSciNet  Google Scholar 

  16. Devillanova, G., Solimini, S.: The role of planar symmetry and of symmetry constraints in the proof of existence of solutions to some scalar field equations. Nonlinear Anal. 201, 112060 (2020)

    Article  MathSciNet  Google Scholar 

  17. Floer, A., Weinstein, A.: Nonspreading wave pockets for the cubic Schrödinger equation with a bounded potential. J. Funct. Anal. 69, 397–408 (1986)

    Article  MathSciNet  Google Scholar 

  18. Grossi, M., Servadei, R.: Morse index for solutions of the nonlinear Schrödinger equation in a degenerate setting. Ann. Mat. Pura Appl. 186, 433–453 (2007)

    Article  MathSciNet  Google Scholar 

  19. Gui, C.: Existence of multi-bump solutions for nonlinear Schrödinger equations via variational method. Commun. Part. Differ. Equ. 21(5–6), 787–820 (1996)

    Article  Google Scholar 

  20. Kang, X., Wei, J.: On interacting bumps of semi-classical states of nonlinear Schrödinger equations. Adv. Differ. Equ. 5, 899–928 (2000)

    MATH  Google Scholar 

  21. Lieb, E.H., Loss, M.: Analysis. Graduate Studies in Mathematics, vol. 14, 2nd edn. American Mathematical Society, Providence (2001)

    MATH  Google Scholar 

  22. Liu, J., Liu, X., Wang, Z.-Q.: Sign-changing solutions for coupled nonlinear Schrödinger equations with critical growth. J. Differ. Equ. 261, 7194–7236 (2016)

    Article  Google Scholar 

  23. Liu, X., Liu, J., Wang, Z.-Q.: Localized nodal solutions for quasilinear Schrödinger equations. J. Differ. Equ. 267, 7411–7461 (2019)

    Article  Google Scholar 

  24. Molle, R., Passaseo, D.: Infinitely many positive solutions of nonlinear Schrödinger equations. Calc. Var. Part. Differ. Equ. 60(2), 79 (2021)

    Article  Google Scholar 

  25. Oh, Y.-G.: On positive multi-bump bound states of nonlinear Schrödinger equations under multiple well potential. Commun. Math. Phys. 131, 223–253 (1990)

    Article  Google Scholar 

  26. Rabinowitz, P.H.: On a class of nonlinear Schrödinger equations. Z. Angew. Math. Phys. 43, 270–291 (1992)

    Article  MathSciNet  Google Scholar 

  27. Rabinowitz, P.: Minimax methods in critical point theory with applications to differential equations. In: CBMS Regional Conference Series in Mathematics, vol. 65. American Mathematical Society, Providence (1986)

  28. Sato, Y.: Sign-changing multi-peak solutions for nonlinear Schrödinger equations with critical frequency. Commun. Pure Appl. Anal. 7, 883–903 (2008)

    Article  MathSciNet  Google Scholar 

  29. Sato, Y., Tanaka, K.: Sign-changing multi-bump solutions for nonlinear Schrödinger equations with steep potential wells. Trans. Am. Math. Soc. 361, 6205–6253 (2009)

    Article  Google Scholar 

  30. Wang, X.: On concentration of positive bound states of nonlinear Schrödinger equations. Commun. Math. Phys. 153, 229–244 (1993)

    Article  Google Scholar 

  31. Wei, J., Yan, S.: Infinitely many positive solutions for the nonlinear Schrödinger equations in \(R^N\). Calc. Var. Part. Differ. Equ. 37, 423–439 (2010)

    Article  Google Scholar 

Download references

Acknowledgements

We are very grateful for the anonymous referee’s constructive suggestions. The work is supported by NSFC (11771324, 11831009).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhi-Qiang Wang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

In this appendix, we give the proof of (4.54).

Proof of (4.54)

Proof

Since \(\Gamma '_{\epsilon _m}(u_m)=0\), by (2.14), \(u_m\in H^1({\mathbb{R}}^N)\) satisfies

$$\begin{aligned} -\Delta u_m+V(\epsilon _m x)u_m+2g'((\int _{{\mathbb{R}}^N}\chi _{\epsilon _m} u^2_m\mathrm{d}x-1)_+)\chi _{\epsilon _m} u_m=|u_m|^{p-2}u_m\quad \text{ in }\ {\mathbb{R}}^N. \end{aligned}$$
(E.1)

Since \(\Gamma _{\epsilon _m}(u_m)\le L\) and \(\Gamma '_{\epsilon _m}(u_m)=0\), by Lemma 2.2, we get that there exists \(\varrho >0\) independent of m such that \(\Vert u_m\Vert \le \varrho\). Then, by (E.1) and the standard regularity theory of elliptic equation, we get that there exists a constant \(C>0\) independent of m such that

$$\begin{aligned} \Vert u_m\Vert _{L^\infty ({\mathbb{R}}^N)}\le C. \end{aligned}$$
(E.2)

Let \(\xi\) be a smooth function satisfying that \(0\le \xi \le 1\) in \({\mathbb{R}}^N\), \(\xi =1\) in \({\mathbb{R}}^N{\setminus} \cup ^n_{j=1}({\mathcal{M}}_j)^{5\sigma /4}\), \(\xi =0\) in \(\cup ^n_{j=1} ({\mathcal{M}}_j)^{\sigma }\) and \(|\nabla \xi |\le 8/\sigma\) in \({\mathbb{R}}^N\). Let

$$\xi _{m}(x)=\xi (\epsilon _m x),\ x\in {\mathbb{R}}^N.$$

Multiplying both sides of equation (E.1) by \(\xi ^2_m u_m\) and integrating in \({\mathbb{R}}^N\), we get that

$$\begin{aligned}&\int _{{\mathbb{R}}^N}\nabla u_m\nabla \left( \xi ^2_m u_m\right) +\int _{{\mathbb{R}}^N}V(\epsilon _m x)\xi ^2_mu^2_m +2g'\left( \left( \int _{{\mathbb{R}}^N}\chi _{\epsilon _m} u^2_m\mathrm{d}x-1\right) _+\right) \int _{{\mathbb{R}}^N}\chi _{\epsilon _m} \xi ^2_mu^2_m\nonumber \\&\quad =\int _{{\mathbb{R}}^N}\xi ^2_m|u_m|^p. \end{aligned}$$
(E.3)

Combining (E.2) and (E.3) leads to

$$\begin{aligned} \int _{{\mathbb{R}}^N}\nabla u_m\nabla (\xi ^2_m u_m)\le \int _{{\mathbb{R}}^N}\xi ^2_m|u_m|^p\le C^{p-2}\int _{{\mathbb{R}}^N}\xi ^2_mu_m^2\le C^{p-2}\int _{{\mathbb{R}}^N\setminus \cup ^n_{j=1} (({\mathcal{M}}_j)^{\sigma })_{\epsilon _m}}u_m^2. \end{aligned}$$
(E.4)

Since

$$\begin{aligned}&\int _{{\mathbb{R}}^N}\nabla u_m\nabla (\xi ^2_m u_m)\\&\quad = \int _{{\mathbb{R}}^N}\xi ^2_m|\nabla u_m|^2+2\int _{{\mathbb{R}}^N} \xi _m u_m\nabla \xi _m\nabla u_m\\&\quad \ge \int _{{\mathbb{R}}^N}\xi ^2_m|\nabla u_m|^2-2(\int _{{\mathbb{R}}^N}u^2_m|\nabla \xi _m|^2)^{1/2}(\int _{{\mathbb{R}}^N}\xi ^2_m|\nabla u_m|^2)^{1/2}\\&\quad \ge \frac{1}{2}\int _{{\mathbb{R}}^N}\xi ^2_m|\nabla u_m|^2-2\int _{{\mathbb{R}}^N}u^2_m|\nabla \xi _m|^2\nonumber \\&\quad \ge \frac{1}{2}\int _{{\mathbb{R}}^N\setminus \cup ^n_{j=1} (({\mathcal{M}}_j)^{5\sigma /4})_{\epsilon _m}}|\nabla u_m|^2-\frac{16}{\sigma ^2}\epsilon ^2_m\int _{{\mathbb{R}}^N\setminus \cup ^n_{j=1} (({\mathcal{M}}_j)^{\sigma })_{\epsilon _m}}u^2_m \end{aligned}$$

by (4.53) and (E.4), we get (4.54). \(\square\)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, S., Wang, ZQ. Gluing higher-topological-type semiclassical states for nonlinear Schrödinger equations. Annali di Matematica 201, 589–616 (2022). https://doi.org/10.1007/s10231-021-01130-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10231-021-01130-5

Keywords

Mathematics Subject Classification

Navigation