Skip to main content
Log in

An \(L_p\)-maximal regularity estimate of moments of solutions to second-order stochastic partial differential equations

  • Published:
Stochastics and Partial Differential Equations: Analysis and Computations Aims and scope Submit manuscript

Abstract

We obtain uniqueness and existence of a solution u to the following second-order stochastic partial differential equation:

$$\begin{aligned} du= \left( {\bar{a}}^{ij}(\omega ,t)u_{x^ix^j}+ f \right) dt + g^k dw^k_t, \quad t \in (0,T); \quad u(0,\cdot )=0, \end{aligned}$$
(1)

where \(T \in (0,\infty )\), \(w^k\) \((k=1,2,\ldots )\) are independent Wiener processes, \(({\bar{a}}^{ij}(\omega ,t))\) is a (predictable) nonnegative symmetric matrix valued stochastic process such that

$$\begin{aligned} \kappa |\xi |^2 \le {\bar{a}}^{ij}(\omega ,t) \xi ^i \xi ^j \le K |\xi |^2 \quad \forall \;(\omega ,t,\xi ) \in \Omega \times (0,T) \times {\mathbf {R}}^d \end{aligned}$$

for some \(\kappa , K \in (0,\infty )\),

$$\begin{aligned} f \in L_p\left( (0,T) \times {\mathbf {R}}^d, dt \times dx ; L_r(\Omega , {\mathscr {F}} ,dP) \right) , \end{aligned}$$

and

$$\begin{aligned} g, g_x \in L_p\left( (0,T) \times {\mathbf {R}}^d, dt \times dx ; L_r(\Omega , {\mathscr {F}} ,dP; l_2) \right) \end{aligned}$$

with \(2 \le r \le p < \infty \) and appropriate measurable conditions. Moreover, for the solution u, we obtain the following maximal regularity moment estimate

$$\begin{aligned}&\int _0^T \int _{{\mathbf {R}}^d}\left( \mathbb {E}\left[ |u(t,x)|^r\right] \right) ^{p/r} dx dt + \int _0^T \int _{{\mathbf {R}}^d}\left( \mathbb {E}\left[ |u_{xx}(t,x)|^r\right] \right) ^{p/r} dx dt \nonumber \\&\le N \bigg (\int _0^T \int _{{\mathbf {R}}^d}\left( \mathbb {E}\left[ |f(t,x)|^r\right] \right) ^{p/r} dx dt + \int _0^T \int _{{\mathbf {R}}^d}\left( \mathbb {E}\left[ |g(t,x)|_{l_2}^r\right] \right) ^{p/r} dx dt \nonumber \\&\quad + \int _0^T \int _{{\mathbf {R}}^d}\left( \mathbb {E}\left[ |g_x(t,x)|_{l_2}^r\right] \right) ^{p/r} dx dt \bigg ), \end{aligned}$$
(2)

where N is a positive constant depending only on d, p, r, \(\kappa \), K, and T. As an application, for the solution u to (1), the rth moment \(m^r(t,x):=\mathbb {E}|u(t,x)|^r\) is in the parabolic Sobolev space \(W_{p/r}^{1,2}\left( (0,T) \times \mathbf {R}^d\right) \).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Auscher, P., Van Neerven, J., Portal, P.: Conical stochastic maximal \(L^p\)-regularity for \(1 \le p <\infty \). Math. Ann. 359(3–4), 863–889 (2014)

    MathSciNet  MATH  Google Scholar 

  2. Bain, A., Crisan, D.: Fundamentals of Stochastic Filtering, vol. 60. Springer Science & Business Media, Cham (2008)

    MATH  Google Scholar 

  3. Chen, Z.-Q., Kim, K.-H.: An \(L_p\)-theory for non-divergence form SPDEs driven by Lévy processes. In: Forum Mathematicum, vol. 26. De Gruyter, pp. 1381–1411 (2014)

  4. Durrett, R.: Probability: Theory and Examples, vol. 49. Cambridge University Press, Cambridge (2019)

    Book  Google Scholar 

  5. Gerencsér, M., Gyöngy, I., Krylov, N.: On the solvability of degenerate stochastic partial differential equations in Sobolev spaces. Stoch. Partial Differ. Equ. Anal. Comput. 3(1), 52–83 (2015)

    MathSciNet  MATH  Google Scholar 

  6. Grafakos, L.: Classical Fourier Analysis, vol. 249. Springer, Berlin (2008)

    MATH  Google Scholar 

  7. Grafakos, L.: Modern Fourier Analysis, vol. 250. Springer, Berlin (2009)

    Book  Google Scholar 

  8. Hytönen, T., Van Neerven, J., Veraar, M., Weis, L.: Analysis in Banach Spaces, vol. 12. Springer, Berlin (2016)

    Book  Google Scholar 

  9. Kim, I., Kim, K.-H.: An \(L_p\)-boundedness of stochastic singular integral operators and its application to SPDEs. Trans. Am. Math. Soc. 373(8), 5653–5684 (2020)

    Article  Google Scholar 

  10. Kim, I., Kim, K.-H.: An \(L_p\)-theory for stochastic partial differential equations driven by Lévy processes with pseudo-differential operators of arbitrary order. Stoch. Process. Appl. 126, 2761–2786 (2016)

    Article  Google Scholar 

  11. Kim, I., Kim, K.-H.: A sharp \(L_p\)-regularity result for second-order stochastic partial differential equations with unbounded and fully degenerate leading coefficients. arXiv preprint arXiv:1905.07545 (2019)

  12. Kim, I., Kim, K.-H., Kim, P.: Parabolic Littlewood–Paley inequality for \(\phi (-\Delta \))-type operators and applications to stochastic integro-differential equations. Adv. Math. 249, 161–203 (2013)

    Article  MathSciNet  Google Scholar 

  13. Kim, I., Kim, K.-H., Lim, S.: Parabolic BMO estimates for pseudo-differential operators of arbitrary order. J. Math. Anal. Appl. 427(2), 557–580 (2015)

    Article  MathSciNet  Google Scholar 

  14. Kim, I., Kim, K.-H., Lim, S., et al.: A Sobolev space theory for stochastic partial differential equations with time-fractional derivatives. Ann. Probab. 47(4), 2087–2139 (2019)

    Article  MathSciNet  Google Scholar 

  15. Kim, K.-H.: On stochastic partial differential equations with variable coefficients in \(C_1\) domains. Stoch. Process. Appl. 112(2), 261–283 (2004)

    Article  Google Scholar 

  16. Kim, K.-H.: Sobolev space theory of SPDEs with continuous or measurable leading coefficients. Stoch. Process. Appl. 119(1), 16–44 (2009)

    Article  MathSciNet  Google Scholar 

  17. Kim, K.-H.: A weighted Sobolev space theory of parabolic stochastic pdes on non-smooth domains. J. Theor. Probab. 27(1), 107–136 (2014)

    Article  MathSciNet  Google Scholar 

  18. Kim, K.-H., Kim, P.: An \(L_p\)-theory of a class of stochastic equations with the random fractional Laplacian driven by Lévy processes. Stoch. Process. Appl. 122(12), 3921–3952 (2012)

    Article  Google Scholar 

  19. Kim, K.-H., Lee, K.: A note on \(W_p^\gamma \)-theory of linear stochastic parabolic partial differential systems. Stoch. Process. Appl. 123(1), 76–90 (2013)

    Article  Google Scholar 

  20. Krylov, N.V.: On \(L_p\)-theory of stochastic partial differential equations in the whole space. SIAM J. Math. Anal. 27(2), 313–340 (1996)

    Article  MathSciNet  Google Scholar 

  21. Krylov, N.V.: An analytic approach to SPDEs. Stoch. Partial Differ. Equ. Six Perspect. Math. Surv. Monogr. 64, 185–242 (1999)

    MathSciNet  MATH  Google Scholar 

  22. Krylov, N.V.: Lectures on Elliptic and Parabolic Equations in Sobolev Spaces, vol. 96. AMS, Providence (2008)

    Book  Google Scholar 

  23. Krylov, N.V.: On divergence form SPDEs with VMO coefficients. SIAM J. Math. Anal. 40(6), 2262–2285 (2009)

    Article  MathSciNet  Google Scholar 

  24. Krylov, N.V., Lototsky, S.V.: A Sobolev space theory of SPDEs with constant coefficients in a half space. SIAM J. Math. Anal. 31(1), 19–33 (1999)

    Article  MathSciNet  Google Scholar 

  25. Lorist, E.: Vector-valued harmonic analysis with applications to SPDE. https://doi.org/10.4233/uuid:c3b05a34-b399-481c-838a-f123ea614f42

  26. Mikulevicius, R., Phonsom, C.: On the Cauchy problem for stochastic integro-differential equations in the scale spaces of generalized smoothness. Potential Anal. 50, 467–519 (2019)

    Article  MathSciNet  Google Scholar 

  27. Mikulevicius, R., Rozovskii, B.: A note on Krylov’s \(L_p\)-theory for systems of SPDEs. Electron. J. Probab. 6, 35 (2001)

    Article  Google Scholar 

  28. Portal, P., Veraar, M.: Stochastic maximal regularity for rough time-dependent problems. Stoch. Partial Differ. Equ. Anal. Comput. 7(4), 541–597 (2019)

    MathSciNet  MATH  Google Scholar 

  29. Rozovsky, B.L., Lototsky, S.V.: Stochastic Evolution Systems: Linear Theory and Applications to Non-linear Filtering, vol. 89. Springer, Berlin (2018)

    Book  Google Scholar 

  30. Stein, E.M., Murphy, T.S.: Harmonic Analysis: Real-Variable Methods, Orthogonality, and Oscillatory Integrals, vol. 3. Princeton University Press, Princeton (1993)

    Google Scholar 

  31. Van Neerven, J., Veraar, M., Weis, L., et al.: Stochastic maximal \(L^p\)-regularity. Ann. Probab. 40(2), 788–812 (2012)

    MathSciNet  MATH  Google Scholar 

  32. Zhang, X.: \(L_p\)-theory of semi-linear SPDEs on general measure spaces and applications. J. Funct. Anal. 239(1), 44–75 (2006)

    Article  MathSciNet  Google Scholar 

  33. Zhang, X.: Regularities for semilinear stochastic partial differential equations. J. Funct. Anal. 249(2), 454–476 (2007)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

I am very grateful to prof. Kyeong-Hun Kim for helpful discussions and suggesting Theorem 2.6 as an application. Moreover, I would like to thank the anonymous referees and the handling editor for careful readings and valuable comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ildoo Kim.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The author has been supported by the National Research Foundation of Korea grant funded by the Korea government (NRF-2020R1A2C1A01003959).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, I. An \(L_p\)-maximal regularity estimate of moments of solutions to second-order stochastic partial differential equations. Stoch PDE: Anal Comp 10, 278–316 (2022). https://doi.org/10.1007/s40072-021-00201-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40072-021-00201-1

Keywords

Mathematics Subject Classification

Navigation