Skip to main content
Log in

Impact of the activation rate of the hyperpolarization- activated current \(\hbox {I}_{\mathrm{h}}\) on the neuronal membrane time constant and synaptic potential duration

  • Regular Article
  • Published:
The European Physical Journal Special Topics Aims and scope Submit manuscript

Abstract

The temporal dynamics of membrane voltage changes in neurons is controlled by ionic currents. These currents are characterized by two main properties: conductance and kinetics. The hyperpolarization-activated current (\(\hbox {I}_{\mathrm {h}}\)) strongly modulates subthreshold potential changes by shortening the excitatory postsynaptic potentials and decreasing their temporal summation. Whereas the shortening of the synaptic potentials caused by the \(\hbox {I}_{\mathrm {h}}\) conductance is well understood, the role of the \(\hbox {I}_{\mathrm {h}}\) kinetics remains unclear. Here, we use a model of the \(\hbox {I}_{\mathrm {h}}\) current model with either fast or slow kinetics to determine its influence on the membrane time constant (\(\tau _{m})\) of a CA1 pyramidal cell model. Our simulation results show that the \(\hbox {I}_{\mathrm {h}}\) with fast kinetics decreases \(\tau _{m}\) and attenuates and shortens the excitatory postsynaptic potentials more than the slow \(\hbox {I}_{\mathrm {h}}\). We conclude that the \(\hbox {I}_{\mathrm {h}}\) activation kinetics is able to modulate \(\tau _{m}\) and the temporal properties of excitatory postsynaptic potentials (EPSPs) in CA1 pyramidal cells. To elucidate the mechanisms by which \(\hbox {I}_{\mathrm {h}}\) kinetics controls \(\tau _{m}\), we propose a new concept called “time scaling factor”. Our main finding is that the \(\hbox {I}_{\mathrm {h}}\) kinetics influences \(\tau _{m}\) by modulating the contribution of the \(\hbox {I}_{\mathrm {h}}\) derivative conductance to \(\tau _{m}\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability Statement

My manuscript has no associated data or the data will not be deposited.

References

  1. M. Maroso, G.G. Szabo, H.K. Kim, A. Alexander, A.D. Bui, S.H. Lee, B. Lutz, I. Soltesz, Neuron 89, 1059–1073 (2016)

    Article  Google Scholar 

  2. J.C. Magee, J. Neurosci. 18, 7613–7624 (1998)

    Article  Google Scholar 

  3. C. Gasselin, Y. Inglebert, D. Debanne, J. Physiol. 593, 4855–4869 (2015)

    Article  Google Scholar 

  4. K.A. Dougherty, D.A. Nicholson, L. Diaz, E.W. Buss, K.M. Neuman, D.M. Chetkovich, D. Johnston, J. Neurophysiol. 109, 1940–1953 (2013)

    Article  Google Scholar 

  5. G.P. Brennan, T.Z. Baram, N.P. Poolos, Cold Spring Harb. Perspect. Med. 6, a022384 (2016)

    Article  Google Scholar 

  6. T.M. Ishii, M. Takano, H. Ohmori, J. Physiol. 537, 93–100 (2001)

    Article  Google Scholar 

  7. J. Stieber, A. Thomer, B. Much, A. Schneider, M. Biel, F. Hofmann, J. Biol. Chem. 278, 33672–33680 (2003)

    Article  Google Scholar 

  8. O. Franz, B. Liss, A. Neu, J. Roeper, Eur. J. Neurosci. 12, 2685–2693 (2000)

    Article  Google Scholar 

  9. M.M. Shah, A.E. Anderson, V. Leung, X.D. Lin, D. Johnston, Neuron 44, 495–508 (2004)

    Article  Google Scholar 

  10. S. Jung, L.N. Warner, J. Pitsch, A.J. Becker, N.P. Poolos, J. Neurosci. 31, 14291–14295 (2011)

    Article  Google Scholar 

  11. S. Jung, T.T. Jones, J.J. Lugo, A.H. Sheerin, J.W. Miller, R. D’Ambrosio, A.E. Anderson, N.P. Poolos, J. Neurosci. 27, 13012–13021 (2007)

    Article  Google Scholar 

  12. S. Jung, J.B. Bullis, I.H. Lau, T.D. Jones, L.N. Warner, N.P. Poolos, J. Neurosci. 30, 6678–6688 (2010)

    Article  Google Scholar 

  13. B. Marcelin, L. Chauviere, A. Becker, M. Migliore, M. Esclapez, C. Bernard, Neurobiol. Dis. 33, 436–447 (2009)

    Article  Google Scholar 

  14. U. Strauss, M.H. Kole, A.U. Bräuer, J. Pahnke, R. Bajorat, A. Rolfs, R. Nitsch, R.A. Deisz, Eur. J. Neurosci. 19, 3048–3058 (2004)

    Article  Google Scholar 

  15. M.H. Kole, A.U. Bräuer, G.J. Stuart, J. Physiol. 578, 507–525 (2007)

    Article  Google Scholar 

  16. T. Berger, M.E. Larkum, H.R. Luscher, J. Neurophysiol. 85, 855–868 (2001)

    Article  Google Scholar 

  17. N.P. Poolos, M. Migliore, D. Johnston, Nat. Neurosci. 5, 767–774 (2002)

    Article  Google Scholar 

  18. M.F. Nolan, G. Malleret, J.T. Dudman, D.L. Buhl, B. Santoro, E. Gibbs, S. Vronskaya, G. Buzsáki, S.A. Siegelbaum, E.R. Kandel, A. Morozov, Cell 119, 719–732 (2004)

    Google Scholar 

  19. D. Tsay, J.T. Dudman, S.A. Siegelbaum, Neuron 56, 1076–1089 (2007)

    Article  Google Scholar 

  20. D.H. Brager, D. Johnston, J. Neurosci. 27, 13926–13937 (2007)

    Article  Google Scholar 

  21. K. Chen, I. Aradi, N. Thon, M. Eghbal-Ahmadi, T.Z. Baram, I. Soltesz, Nat. Med. 7, 331–336 (2001)

    Article  Google Scholar 

  22. M.W. Remme, J. Rinzel, J. Comput. Neurosci 31, 13–30 (2011)

    Article  MathSciNet  Google Scholar 

  23. C. Koch, M. Rapp, I. Segev, Cereb. Cortex 6, 93–101 (1996)

    Article  Google Scholar 

  24. R. Surges, T.M. Freiman, T.J. Feuerstein, Epilepsia 44, 150–156 (2003)

    Article  Google Scholar 

  25. N.P. Poolos, J.B. Bullis, M.K. Roth, J. Neurosci. 26, 7995–8003 (2006)

    Article  Google Scholar 

  26. I. van Welie, J.A. van Hooft, J.W. Wytse, P. Natl, Acad. Sci. USA 101, 5123–5128 (2004)

    Article  ADS  Google Scholar 

  27. A.R. Willms, D.J. Baro, R.M. Harris-Warrick, J. Guckenheimer, J. Comput. Neurosci. 6, 145–168 (1999)

    Article  Google Scholar 

  28. C.C. Ceballos, A.C. Roque, R.M. Leão, Biophys. J. 113, 2207–2217 (2017)

    Article  ADS  Google Scholar 

  29. R.F.O. Pena, C.C. Ceballos, V. Lima, A.C. Roque, Phys. Rev. E 97, 042408 (2018)

  30. C.C. Ceballos, R.F.O. Pena, A.C. Roque, R.M. Leão, Channels 12, 81–88 (2018)

    Article  Google Scholar 

  31. T. Carnevale, M. Hines, The NEURON Book (Cambridge University Press, Cambridge, 2006)

  32. T. Van Pottelbergh, G. Drion, R. Sepulchre, Neural Comput. 33, 563–589 (2021)

  33. A.I. Wlodarczyk, C. Xu, I. Song, M. Doronin, Y.W. Wu, M. Walker, A. Semyanov, Front. Neural Circuits 7, 205 (2014)

    Google Scholar 

  34. S. Liu, M.T. Shipley, J. Neurosci. 28, 10311–10322 (2008)

    Article  Google Scholar 

  35. W.D. Anderson, E.J. Galván, J.C. Mauna, E. Thiels, G. Barrionuevo, Pflugers Arch. - Eur. J. Physiol. 462, 895–912 (2011)

    Article  Google Scholar 

  36. M.J. Richardson, G. Silberberg, J. Neurophysiol. 99, 1020–1031 (2008)

    Article  Google Scholar 

  37. C.C. Ceballos, S. Li, A.C. Roque, T. Tzounopoulos, R.M. Leão, Front. Cell. Neurosci. 10, 249 (2016)

    Article  Google Scholar 

  38. J. Yamada-Hanff, B.P. Bean, J. Neurophysiol. 114, 2376–2389 (2015)

    Article  Google Scholar 

  39. G. Drion, A. Franci, J. Dethier, R. Sepulchre, eNeuro 2, (2015) e0031-14.2015

  40. A.O.S. Cunha, C.C. Ceballos, J.L. de Deus, R.M. Leão, Eur. J. Neurosci. 47, 1401–1413 (2018)

    Article  Google Scholar 

Download references

Acknowledgements

This article was produced as part of the IRTG 1740/TRP 2011/50151-0, funded by the DFG/FAPESP. It was also supported partially by the S. Paulo Research Foundation (FAPESP) Research, Innovation and Dissemination Center for Neuromathematics (CEPID NeuroMat, Grant No. 2013/07699-0). The authors also thank FAPESP support through Grants Nos. 2013/25667-8 (R.F.O.P.), 2015/50122-0 and 2018/20277 (A.C.R.). C.C.C. was supported by a CAPES PhD scholarship. A.C.R. thanks financial support from the National Council of Scientific and Technological Development (CNPq), Grant No. 306251/2014-0. This study was financed in part by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior-Brasil (CAPES) - Finance Code 001.

Author information

Authors and Affiliations

Authors

Contributions

Author Contributions: C.C.C conceived the work, C.C.C. and R.F.O.P. run and analyze the simulations, C.C.C. and R.F.O.P and A.C.R. wrote the manuscript, A.C.R. supervised the research. All authors read and agreed to the published version of the manuscript.

Corresponding author

Correspondence to Antonio C. Roque.

Appendix A. Membrane time constant is modulated by rate of activation of \(\hbox {I}_{\mathrm {h}}\)

Appendix A. Membrane time constant is modulated by rate of activation of \(\hbox {I}_{\mathrm {h}}\)

A single compartment neuron with one leak current (\(\hbox {I}_{\mathrm {L}})\) and one \(\hbox {I}_{\mathrm {h}}\) has the membrane equation:

$$\begin{aligned} C\frac{dV}{dt}= -I_{L}- I_{h} \end{aligned}$$
(A1)

And assuming that the voltage temporal evolution of the capacitor charging can be described by a single exponential function when a constant current step is injected [32]:

$$\begin{aligned} V\left( t \right) =B\left( 1-\exp \left( -\frac{t}{\tau _{m}} \right) \right) +V_{0} \end{aligned}$$
(A2)

where B and V are constants and \(\tau _{m}\) is the membrane time constant. Then differentiating equation (A2) in time and multiplying by C:

$$\begin{aligned} C\frac{dV}{dt}=CB\left( \frac{e^{-\frac{t}{\tau _{m}}}}{\tau _{m}} \right) \end{aligned}$$
(A3)

Isolating the exponential term in Eq A2 we get that \(e^{-\frac{t}{\tau _{m}}}= 1- \frac{V\left( t \right) -V_{0}}{B}\) , and substituting this in Eq (A3)

$$\begin{aligned} C\frac{dV}{dt}=CB\left( \frac{1- \frac{V\left( t \right) -V_{0}}{B}}{\tau _{m}} \right) \end{aligned}$$
(A4)

Equaling A4 and A1 and differentiating with respect to V:

$$\begin{aligned} \frac{C}{\tau _{m}}= \frac{\partial I_{L}}{\partial V}+\frac{\partial I_{h}}{\partial V} \end{aligned}$$
(A5)

Isolating \(\uptau _{\mathrm {m}}\):

$$\begin{aligned} \tau _{m}= \frac{C}{\frac{\partial I_{L}}{\partial V}+\frac{\partial I_{h}}{\partial V}} \end{aligned}$$
(A6)

Differentiating each current, we obtain:

$$\begin{aligned} \tau _{m}= \frac{C}{{\bar{g}}_{L}+{\overline{g_{h}}}A_{h}+ {\overline{g_{h}}}\left( V- E_{h} \right) \frac{\partial A_{h}}{\partial V}} \end{aligned}$$
(A7)

For the sake of simplicity, we will only investigate the cases where \(\Delta \hbox {A}_{\mathrm {h}}\) is small due to small \(\Delta \hbox {V}\). Under this condition, \({\overline{g_{h}}}A_{h}\approx {\overline{g_{h}}}A_{h}^{\infty }\), where this term corresponds to the \(\hbox {I}_{\mathrm {h}}\) chord conductance (\(\hbox {g}_{\mathrm {h}}\)). Replacing in the equation:

$$\begin{aligned} \tau _{m}= \frac{C}{{\bar{g}}_{L}+{\overline{g_{h}}}A_{h}^{\infty }+ {\overline{g_{h}}}\left( V- E_{h} \right) \frac{\partial A_{h}}{\partial V}} \end{aligned}$$
(A8)

The partial derivative (\(\frac{\partial A_{h}}{\partial V})\) in the third term of the denominator has well known analytical solution only for the extreme cases when \(\tau _{h }\rightarrow \infty \) (infinitely slow kinetics) and \(\tau _{h} = 0\) (instantaneous kinetics). When \(\tau _{h} \rightarrow \infty \), \(\hbox {A}_{\mathrm {h}}\) does not change with V, then \(\hbox {A}_{\mathrm {h}} = \hbox {A}_{\mathrm {h}}^{{\infty }}\) (V) and \(\frac{\partial A_{h}}{\partial V} = 0\), then:

$$\begin{aligned} \tau _{m}(\tau _{h}\rightarrow { \infty })= \frac{C}{{\bar{g}}_{L}+{\overline{g_{h}}}A_{h}^{\infty }} = \frac{C}{{\bar{g}}_{L}+g_{h}} \end{aligned}$$
(A9)

On the other hand, when \(\tau _{h} = 0\), \(\frac{\partial A_{h}}{\partial V}= \frac{\partial A_{h}^{\infty }}{\partial V}\), then:

$$\begin{aligned} \tau _{m}= \frac{C}{{\bar{g}}_{L}+{\overline{g_{h}}}A_{h}^{\infty }+ {\overline{g_{h}}}\left( V- E_{h} \right) \frac{\partial A_{h}^{\infty }}{\partial V}}= \frac{C}{{\bar{g}}_{L}+G_{h}}\nonumber \\ \end{aligned}$$
(A10)

where \(\hbox {G}_{\mathrm {h}}\) is the slope conductance (\(\hbox {G}_{\mathrm {h}})\). Concluding, we can state that \(\uptau _{\mathrm {m}}\) is determined by the steady state slope conductance of the instantaneous current and chord conductance of the infinitely slow current.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ceballos, C.C., Pena, R.F.O. & Roque, A.C. Impact of the activation rate of the hyperpolarization- activated current \(\hbox {I}_{\mathrm{h}}\) on the neuronal membrane time constant and synaptic potential duration. Eur. Phys. J. Spec. Top. 230, 2951–2961 (2021). https://doi.org/10.1140/epjs/s11734-021-00176-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjs/s11734-021-00176-z

Navigation