Skip to main content
Log in

Simulation of Multicomponent Gas Flows Using Double-Flux Method

  • Published:
Mathematical Models and Computer Simulations Aims and scope

Abstract

The paper is devoted to numerical simulation of multicomponent gas flows based on extended Euler equations using a modified explicit Godunov-type scheme. A feature of the used algorithm is to take into account strong shock waves and occurrence of pressure oscillations at contact boundaries. This is expressed by the use of exact solutions of the corresponding Riemann problem and special double-flux modification of Godunov-flux. Numerical simulation results demonstrate the robustness of present method and good agreement with the one- and two-dimensional test data of other groups and laboratory experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.
Fig. 13.

Similar content being viewed by others

REFERENCES

  1. A. L. Zheleznyakova and S. T. Surzhikov, Towards a Model of a Virtual HFV. I (Inst. Probl. Mekh. Ross. Akad. Nauk, Moscow, 2013) [in Russian].

    Google Scholar 

  2. S. T. Surzhikov, Radiation Gas Dynamics of Descent Space Vehicles. Multi-Temperature Models (Inst. Probl. Mekh. Ross. Akad. Nauk, Moscow, 2013) [in Russian].

    Google Scholar 

  3. T. Poinsot and D. Veynante, Theoretical and Numerical Combustion, 3rd ed. (Edwards, Philadelphia, 2011).

    Google Scholar 

  4. V. T. Zhukov, O. B. Feodoritova, A. P. Duben, and N. D. Novikova, “Explicit time integration of the Navier-Stokes equations using the local iteration method,” KIAM Preprint No. 12 (Keldysh Inst. Appl. Math., Moscow, 2019) [in Russian].

    Google Scholar 

  5. V. T. Zhukov, N. D. Novikova, and O. B. Feodoritova, “An approach to time integration of the Navier-Stokes equations,” Comput. Math. Math. Phys. 20 (2), 272–285 (2020).

    Article  MathSciNet  Google Scholar 

  6. S. K. Godunov et al., Numerical Solution of Multidimensional Problems of Gas Dynamics (Nauka, Moscow, 1976) [in Russian].

    Google Scholar 

  7. R. Abgrall, “Généralisation du schéma de Roe pour le calcul d’écoulement de mélanges de gaz à concentrations variables (Generalization of the Roe scheme for computing flows of mixed gases at variable concentrations),” Rech. Aérosp., No. 6, 31–43 (1988).

  8. I. É. Ivanov and I. A. Kryukov, “Numerical modeling of multicomponent gas flows with strong discontinuities of medium properties,” Mat. Model. 19 (12), 89–100 (2007).

    MathSciNet  MATH  Google Scholar 

  9. R. Abgrall, “How to prevent pressure oscillations in multicomponent flow calculations: A quasi conservative approach,” J. Comput. Phys. 125 (1), 150–160 (1996).

    Article  MathSciNet  Google Scholar 

  10. G. Billet and R. Abgrall, “An adaptive shock-capturing algorithm for solving unsteady reactive flows,” Comput. Fluids 32 (10), 1473–1495 (2003).

    Article  Google Scholar 

  11. V. E. Borisov and Yu. G. Rykov, “An exact Riemann solver in the algorithms for multicomponent gas dynamics,” KIAM Preprint No. 96 (Keldysh Inst. Appl. Math., Moscow, 2018) [in Russian].

    Google Scholar 

  12. V. E. Borisov and Yu. G. Rykov, “Modified Godunov method for multicomponent flow simulation,” J. Phys.: Conf. Ser. 1250, 012006 (2019).

    Google Scholar 

  13. M. W. Chase, Jr., NIST-JANAF Thermochemical Tables, 4th ed., J. Phys. Chem. Ref. Data, Monograph No. 9 (American Institute of Physics, Woodbury, NY, 1998).

  14. A. G. Kulikovskii, N. V. Pogorelov, and A. Yu. Semenov, Mathematical Problems of the Numerical Solution of Hyperbolic Systems of Equations (Fizmatlit, Moscow, 2001) [in Russian].

    MATH  Google Scholar 

  15. R. Abgrall and S. Karni, “Computations of compressible multifluids,” J. Comput. Phys. 169 (2), 594–623 (2001).

    Article  MathSciNet  Google Scholar 

  16. Yu. V. Tunik, “Instability of contact surface in cylindrical explosive waves,” Fluid Mech.: Open Access 4 (4), No. 168, 1–7 (2017).

  17. V. Yu. Gidaspov, I. E. Ivanov, I. A. Kryukov, I. M. Naboko, V. A. Petuhov, and V. Yu. Strel’tsov, “Investigation of the processes of propagation of combustion and detonation waves in a cumulating cavity,” Mat. Model. 16 (6), 118–122 (2004).

    MATH  Google Scholar 

  18. R. Saurel and R. Abgrall, “A multiphase Godunov method for compressible multifluid and multiphase flows,” J. Comput. Phys. 150 (2), 425–467 (1999).

    Article  MathSciNet  Google Scholar 

  19. P. C. Ma, Y. Lv, and M. Ihme, “An entropy-stable hybrid scheme for simulations of transcritical real-fluid flows,” J. Comput. Phys. 340, 330–357 (2017).

    Article  MathSciNet  Google Scholar 

  20. I. V. Abalakin, P. A. Bakhvalov, A. I. Gorobets, A. P. Duben, and T. K. Kozubskaya, “Parallel software package NOISEtte for large-scale computational problems in aerodynamics and aeroacoustics,” Vychisl. Metody Program. 13 (3), 110–125 (2012).

    Google Scholar 

  21. G. Chen, H. Tang, and P. Zhang, “Second-order accurate Godunov scheme for multicomponent flows on moving triangular meshes,” J. Sci. Comput. 34 (1), 64–86 (2008).

    Article  MathSciNet  Google Scholar 

  22. J. J. Quirk and S. Karni, “On the dynamics of a shock–bubble interaction,” J. Fluid Mech. 318, 129–163 (1996).

    Article  Google Scholar 

  23. Y. S. Lian and K. Xu, “A gas-kinetic scheme for multimaterial flows and its application in chemical reactions,” J. Comput. Phys. 163 (2), 349–375 (2000).

    Article  Google Scholar 

  24. R. Loubère, P.-H. Maire, M. Shashkov, J. Breil, and S. Galera, “ReALE: A reconnection-based arbitrary-Lagrangian–Eulerian method,” J. Comput. Phys. 229 (12), 4724–4761 (2010).

    Article  MathSciNet  Google Scholar 

  25. Yu. V. Yanilkin, Yu. A. Bondarenko, E. A. Goncharov et al., Tests for Hydrocodes Modeling Shock-Wave Flows in Multicomponent Media, Vol. 1 (RFYaTs-VNIIEF, Sarov, 2017) [in Russian].

  26. J.-F. Haas and B. Sturtevant, “Interaction of weak shock waves with cylindrical and spherical gas inhomogeneities,” J. Fluid Mech. 181, 41–76 (1987).

    Article  Google Scholar 

Download references

Funding

This study was carried out with the financial support of the Russian Science Foundation, grant no. 17-71-30 014.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to V. E. Borisov or Yu. G. Rykov.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Borisov, V.E., Rykov, Y.G. Simulation of Multicomponent Gas Flows Using Double-Flux Method. Math Models Comput Simul 13, 453–465 (2021). https://doi.org/10.1134/S2070048221030042

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2070048221030042

Keywords:

Navigation