Skip to main content
Log in

Mathematical Model of Plasmon Nanolaser Resonator Taking the Non-Local Effect into Account

  • Published:
Mathematical Models and Computer Simulations Aims and scope

Abstract

Based on the discrete sources method, a mathematical model of the plasmon nanolaser resonator deposited on the prism surface in an active ambient medium is developed and implemented, which allows taking into account the non-local effect (NLE) in the plasmon material. The resonator’s characteristics are optimized, which makes it possible to obtain a field enhancement on the external surface of the resonator by more than two orders of magnitude. The influence of the NLE on the enhancement in the spectral wavelength range is investigated. It is shown that accounting for the NLE leads to a significant decrease in the near-field intensity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. M. S. Tame, K. R. McEnery, Ş. K. Özdemir et al., “Quantum plasmonics,” Nature Phys. 9 (6), 329–340 (2013).

    Article  Google Scholar 

  2. M. I. Stockman, K. Kneipp, S. I. Bozhevolnyi et al., “Roadmap on plasmonics,” J. Opt. 20 (4), 043001 (2018).

    Article  Google Scholar 

  3. D. K. Gramotnev and S. I. Bozhevolnyi, “Plasmonics beyond the diffraction limit,” Nat. Photonics 4 (2), 83–91 (2010).

    Article  Google Scholar 

  4. D. Xu, X. Xiong, L. Wu et al., “Quantum plasmonics: New opportunity in fundamental and applied photonics,” Adv. Opt. Photonics 10 (4), 703–756 (2018).

    Article  Google Scholar 

  5. D. J. Bergman and M. I. Stockman, “Surface plasmon amplification by stimulated emission of radiation: Quantum generation of coherent surface plasmons in nanosystems,” Phys. Rev. Lett. 90 (2), 027402 (2003).

    Article  Google Scholar 

  6. M. A. Noginov, G. Zhu, A. M. Belgrave et al., “Demonstration of a spaser-based nanolaser,” Nature 460 (7259), 1110–1112 (2009).

    Article  Google Scholar 

  7. M. Premaratne and M. I. Stockman, “Theory and technology of SPASERs,” Adv. Opt. Photonics 9 (1), 79–128 (2017).

    Article  Google Scholar 

  8. V. I. Balykin, “Plasmon nanolaser: Current state and prospects,” Phys.-Usp. 61 (9), 846–870 (2018).

    Article  Google Scholar 

  9. H.-P. Solowan and C. Kryschi, “Facile design of a plasmonic nanolaser,” Condens. Matter 2 (1), 8, 1–7 (2017).

  10. M. B. Gawande, A. Goswami, T. Asefa et al., “Core-shell nanoparticles: Synthesis and applications in catalysis and electrocatalysis,” Chem. Soc. Rev. 44 (21), 7540–7590 (2015).

    Article  Google Scholar 

  11. H.-P. Feng, L. Tang L., G.-M. Zeng et al., “Core-shell nanomaterials: Applications in energy storage and conversion,” Adv. Colloid Interface Sci. 267, 26–46 (2019).

    Article  Google Scholar 

  12. P. K. Kalambate, Dhanjai, Z. Huang et al., “Core-shell nanomaterials based sensing devices: A review,” TrAC Trends Anal. Chem. 115, 147–161 (2019).

    Article  Google Scholar 

  13. P. Yu, Y. Yao, J. Wu et al., “Effects of plasmonic metal core-dielectric shell nanoparticles on the broadband light absorption enhancement in thin film solar cells,” Sci. Rep. 7, Article 7696, 1–10 (2017).

    Google Scholar 

  14. Z. Izadiyan, K. Shameli, M. Miyake et al., “Green fabrication of biologically active magnetic core-shell Fe3O4/Au nanoparticles and their potential anticancer effect,” Mater. Sci. Eng. C 96, 51–57 (2019).

    Article  Google Scholar 

  15. G. Toscano, J. Straubel, A. Kwiatkowski et al., “Resonance shifts and spill-out effects in self-consistent hydrodynamic nanoplasmonics,” Nat. Commun. 6, Article 7132, 1–11 (2015).

    Google Scholar 

  16. N. A. Mortensen, S. Raza, M. Wubs et al., “A generalized non-local optical response theory for plasmonic nanostructures,” Nat. Commun. 5, Article 3809, 1–7 (2014).

    Google Scholar 

  17. M. Barbry, P. Koval, F. Marchesin, R. Esteban et al., “Atomistic near-field nanoplasmonics: Reaching atomic-scale resolution in nanooptics,” Nano Lett. 15 (5), 3410–3419 (2015).

    Article  Google Scholar 

  18. M. Wubs and N. A. Mortensen, “Nonlocal response in plasmonic nanostructures,” in Quantum Plasmonics, Ed. by S. I. Bozhevolnyi et al., Springer Series in Solid-State Sciences (Springer, Cham, 2017), Vol. 185, pp. 279–302.

  19. Yu. A. Eremin and A. G. Sveshnikov, “Analysis of the influence of the nonlocality effect on the characteristics of plasmon nanolaser resonators via the discrete sources method,” Moscow Univ. Phys. Bull. 74 (3), 262–268 (2019).

    Article  Google Scholar 

  20. C. Jerez-Hanckes and J.-C. Nédélec, “Asymptotics for Helmholtz and Maxwell solutions in 3-D open waveguides,” Research Report No. 2010-07 (ETH, Swiss Federal Institute of Technology Zurich, February 2010); Commun. Comput. Phys. 11 (2), 629–646 (2012).

    Article  MathSciNet  Google Scholar 

  21. Yu. A. Eremin and A. G. Sveshnikov, “Influence of non-local effect on the scattering properties of nonspherical plasmonic nanoparticles on a substrate,” Math. Models Comput. Simul. 10 (6), 730–740 (2018).

    Article  MathSciNet  Google Scholar 

  22. Yu. A. Eremin and A. G. Sveshnikov, “Near field formation via colloid particles in problems of nanoprocessing silicon substrates,” Math. Models Comput. Simul. 10 (1), 36–44 (2018).

    Article  MathSciNet  Google Scholar 

  23. Refractive Index Database. http://www.refractiveindex.info

  24. Yu. A. Eremin and A. G. Sveshnikov, “Discrete sources method for the study of influence nonlocality on characteristics of the plasmonic nanolaser resonators,” Comput. Math. Math. Phys. 59 (12), 2164–2172 (2019).

    Article  MathSciNet  Google Scholar 

  25. E. Eremina, Y. Eremin, and T. Wriedt, “Computational nano-optic technology based on discrete sources method,” J. Modern Opt. 58 (5–6), 384–399 (2011).

    Article  Google Scholar 

  26. Yu. A. Eremin and N. V. Grishina, “Modeling of nanoshells spectra in evanescent wave field via discrete sources method,” J. Quant. Spectrosc. Radiat. Transfer 100 (1–3), 122–130 (2006).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yu. A. Eremin or A. G. Sveshnikov.

Additional information

Translated by E. Oborin

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Eremin, Y.A., Sveshnikov, A.G. Mathematical Model of Plasmon Nanolaser Resonator Taking the Non-Local Effect into Account. Math Models Comput Simul 13, 466–473 (2021). https://doi.org/10.1134/S2070048221030054

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2070048221030054

Keywords:

Navigation