Skip to main content
Log in

Three-Dimensional Numerical Modeling of the Hydrodynamic and Gravitational Instability of a Protoplanetary Disk

  • Published:
Mathematical Models and Computer Simulations Aims and scope

Abstract—

The paper considers a three-dimensional gas-dynamic model of a protoplanetary disk that revolves around a gravitating center. The dynamics of small perturbations in a rotational shear flow are modeled. The development of the initial azimuthal perturbations of the rotation speed leads to the formation of spiral density arms, while self-gravity increases its local maxima and creates gravitational instability as well as disk fragmentation. The obtained results are of interest for the theory explaining the formation of protoplanetary systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.

Similar content being viewed by others

REFERENCES

  1. J. H. Jeans, “The stability of a spherical nebula,” Philos. Trans. R. Soc. London, A 199 (312), 1–53 (1902).

    Article  Google Scholar 

  2. A. M. Fridman and A. V. Khoperskov, Physics of Galactic Disks (Fizmatlit, Moscow, 2011; Cambridge International Science, Cambridge, 2012).

  3. O. M. Belotserkovskii, A. M. Oparin, and V. M. Chechetkin, Turbulence: New Approaches (Nauka, Moscow, 2003; Cambridge International Science, Cambridge, 2005).

  4. P. G. Drazin, Introduction to Hydrodynamic Stability (Cambridge Univ. Press, Cambridge, 2002).

    Book  Google Scholar 

  5. P. J. Armitage, “Physical processes in protoplanetary disks,” arXiv:1509.06382 v2 (2017); in From Protoplanetary Disks to Planet Formation, Ed. by M. Audard, M. Meyer, and Y. Alibert, Saas-Fee Advanced Course (Springer, Berlin, Heidelberg. 2019), Vol. 45, pp. 1–150.

  6. P. J. Schmid and D. S. Henningson, Stability and Transition in Shear Flows (Springer, New York, 2001).

    Book  Google Scholar 

  7. A. Yu. Lugovskii, S. I. Mukhin, Yu. P. Popov, and V. M. Chechetkin, “The development of large-scale instability in stellar accretion disks and its influence on the redistribution of angular momentum,” Astron. Rep. 52 (10), 811–814 (2008).

    Article  Google Scholar 

  8. T. G. Elizarova, A. A. Zlotnik, and M. A. Istomina, “Hydrodynamical aspects of the formation of spiral–vortical structures in rotating gaseous disks,” Astron. Rep. 62 (1), 9–18 (2018).

    Article  Google Scholar 

  9. L. G. Strakhovskaya, “On the steady states of a gravitating gas disk,” Math. Models Comput. Simul. 10 (1), 15–25 (2018).

    Article  MathSciNet  Google Scholar 

  10. K. M. Kratter, Ch. D. Matznerar, M. R. Krumholz, and R. I. Klein, “On the role of disks in the formation of stellar systems: a numerical parameter study of rapid accretion,” arXiv: 0907.3476 v1 (2009);

  11. Astrophys. J. 708 (2), 1585–1597 (2010).

  12. A. Toomre, “On the gravitational stability of a disk of stars,” Astrophys. J. 139 (4), 1217–1238 (1964).

    Article  Google Scholar 

  13. S. K. Godunov et al., Numerical Solution of Multidimensional Problems of Gas Dynamics (Nauka, Moscow, 1976) [in Russian].

    Google Scholar 

  14. R. P. Fedorenko, Introduction to Computational Physics, 2nd ed. (Intellekt, Dolgoprudnyi, 2008) [in Russian].

  15. M. V. Abakumov, S. I. Mukhin, Yu. P. Popov, and V. M. Chechetkin, “Stationary disk structures near graviting compact objects,” Astron. Rep. 40 (3), 366–377 (1996).

    Google Scholar 

  16. J.-L. Tassoul, Theory of Rotating Stars (Princeton Univ. Press, Princeton, 1978; Mir, Moscow, 1982).

  17. L. G. Strakhovskaya, “Role of gravity in the formation of the circumstellar gas disk,” KIAM Preprint No. 82 (Keldysh Inst. Appl. Math., Moscow, 2013) [in Russian]. URL: http://library.keldysh. ru/preprint.asp?id=2013-82

  18. L. G. Strakhovskaya, “The formation of spiral-vortex structures in a gravitating protoplanetary disk,” in Proc. Int. Conf. “Analytical and Numerical Methods for Solving of Hydrodynamics, Mathematical Physics and Biology Problems”, dedicated to the 100th anniversary of K. I. Babenko (Pushchino, Russia, 2019), pp. 148–149.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. G. Strakhovskaya.

Additional information

Translated by I. Pertsovskaya

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Strakhovskaya, L.G. Three-Dimensional Numerical Modeling of the Hydrodynamic and Gravitational Instability of a Protoplanetary Disk. Math Models Comput Simul 13, 522–531 (2021). https://doi.org/10.1134/S2070048221030169

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2070048221030169

Keywords:

Navigation