Skip to main content
Log in

The Importance of a Species in a Biocoenosis, a Class of Biocoenoses, and a Region: A Review of Combined Indexes

  • ECOLOGY
  • Published:
Biology Bulletin Aims and scope Submit manuscript

Abstract

This paper reviews the combined indexes created to reflect the importance of a species (species population) in an individual biocoenosis, in a region (regional or spatial complex), and in a class (type) of biocoenoses. The main features of the indexes, such as the parameters included, structures of formulas, areas of applicability, and limitations of use are discussed. The content of some parameters, such as the frequency in a biocoenosis, the frequency in a region, and the presence, is made more accurate for an interdisciplinary context. The combined importance indexes were created from parameters that can be measured during the collection of mass data using common field research methods. The ease of measurement largely determines whether the combined indexes are in demand. The main areas of their application are in investigation of the dominance structure, in comparative analysis of importance values of different species in one biocoenosis, and in comparative analysis of biocoenoses considering the importance value of their constituent species. Therefore, combined indexes are used for the study of dynamics, for the description of classes of biocoenoses, for analysis of spatial series of biocoenoses, for calculation of the correlation between species or biocoenoses and the environment, for estimation of the biomass, for modeling of the geographical distribution of species, etc. Additionally, these indexes can be used everywhere where not only the composition but also the importance of species are considered. For example, currently a tendency to use combined indexes in geographic information systems has been outlined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Albert, C.H., Thuiller, W., Yoccoz, N.G., Douzet, R., Au-bert, S., and Lavorel, S., A multi-trait approach reveals the structure and the relative importance of intra- vs. interspecific variability in plant traits, Function. Ecol., 2010, vol. 24, pp. 1192–1201.

    Article  Google Scholar 

  2. Arnol’di, L.V., Materials on the quantitative study of the zoobenthos of the Black Sea, Tr. Zool. Inst. Akad. Nauk SSSR, 1941, vol. 7, no. 2, pp. 94–113.

    Google Scholar 

  3. Arnol’di, L.V., Materials for the quantitative study of the zoobenthos of the Black Sea. 2. Karkinitsky Bay, Tr. Sevastop. Biol. Stn., 1949, vol. 7, pp. 127–192.

    Google Scholar 

  4. Bakanov, A.I., Quantitative assessment of domination in ecological communities, in Kolichestvennye metody ekologii i gidrobiologii (Quantitative Methods of Ecology and Hydrobiology), Rozenberg, G.S., Ed., Tolyatti: Samar. Nauchn. Tsentr Ross. Akad. Nauk, 2005, pp. 37–67.

  5. Bakanov, A.I., Kolichestvennaya otsenka dominirovaniya v ekologicheskikh soobshchestvakh (Quantification of Dominance in Ecological Communities), Borok, 1987, Available from VINITI, no. 8593.

  6. Barker, J.R., Ringold, P.L., and Bollman, M., Patterns of tree dominance in coniferous riparian forests, For. Ecol. Manage., 2002, vol. 166, nos. 1–3, pp. 311–329.

    Article  Google Scholar 

  7. Baruch, Z., Vegetation–environment relationships and classification of the seasonal savannas in Venezuela, Flora, 2005, vol. 200, no. 1, pp. 49–64.

    Article  Google Scholar 

  8. Begon, M., Townsend, C.R., and Harper, J.L., Ecology: From Individuals to Ecosystems, Malden: Blackwell, 2006.

    Google Scholar 

  9. Blonder, B., Lamanna, Chr., Violle, C., and Enquist, B.J., The n-dimensional hypervolume, Global Ecol. Biogeogr., 2014, vol. 23, no. 5, pp. 595–609.

    Article  Google Scholar 

  10. Bohn, K.K. and Nyland, R.D., Forecasting development of understory American beech after partial cutting in uneven-aged northern hardwood stands, For. Ecol. Manage., 2003, vol. 180, pp. 453–461.

    Article  Google Scholar 

  11. Braun-Blanquet, J., Plant Sociology. The Study of Plant Communities, New York: McGraw-Hill Book Co. Inc., 1932.

    Google Scholar 

  12. Bredenkamp, G.J. and Theron, G.K., A quantitative approach to the structural analysis and classification of the vegetation of the Manyeleti Game Reserve, South Afr. J. Bot., 1985, vol. 51, no. 1, pp. 45–54.

    Article  Google Scholar 

  13. Butorina, T.N., Ecological-coenotic analysis of the subshrub-herb layer of forest associations, in Tipy lesov Sibiri (Types of Siberian Forests), Smagin, V.N., Ed., Moscow: Akad. Nauk SSSR, 1963, pp. 30–51.

  14. Bykov, B.A., On the method of studying the struggle for existence in phytocoenoses, Byull. Mosk. O-va Ispyt. Prir., Otd. Biol., 1951, vol. 56, no. 2, pp. 68–73.

    CAS  Google Scholar 

  15. Bykov, B.A., Geobotanicheskaya terminologiya (Geobotanical Terminology), Alma-Ata: Nauka, 1967.

  16. Bykov, B.A., Vvedenie v fitotsenologiyu (Introduction to Phytocenology), Alma-Ata: Nauka, 1970.

  17. Bykov, B.A., Ekologicheskii slovar’ (Ecological Dictionary), Alma-Ata: Nauka, 1988.

    Google Scholar 

  18. Chambers, D., Périé, C., Casajus, N., and de Blois, S., Challenges in modelling the abundance of 105 tree species in eastern North America using climate, edaphic, and topographic variables, For. Ecol. Manage., 2013, vol. 291, pp. 20–29.

    Article  Google Scholar 

  19. Chown, S.L., Marais, E., Terblanche, J.S., Klok, C.J., Lighton, J.R.B., and Blackburn, T.M., Scaling of insect metabolic rate is inconsistent with the nutrient supply network model, Funct. Ecol., 2007, vol. 21, pp. 282–290.

    Article  Google Scholar 

  20. Clements, F.E., Nature and structure of the climax, J. Ecol., 1936, vol. 24, no. 1, pp. 252–284.

    Article  Google Scholar 

  21. Coroi, M., Skeffington, M.S., Giller, P., Smith, C., Gormally, M., and O’Donovan, G., Vegetation diversity and stand structure in streamside forests in the south of Ireland, For. Ecol. Manage., 2004, vol. 202, nos. 1–3, pp. 3–57.

    Article  Google Scholar 

  22. Curtis, J.T., The palo verde forest type near Gonivaves, Haiti, and its relation to the surrounding vegetation, Caribb. For., 1947, vol. 8, no. 1, pp. 1–25.

    Google Scholar 

  23. Curtis, J.T. and McIntosh, R.P., An upland forest continuum in the prairie-forest border region of Wisconsin, Ecology, 1951, vol. 32, no. 3, pp. 476–496.

    Article  Google Scholar 

  24. Daubenmire, R.F., Plant Communities. A Textbook of Plant Synecology, New York: Harper and Row, 1968.

    Google Scholar 

  25. Dyksterhuis, E.J., The vegetation of the fort worth prairie, Ecol. Monogr., 1946, vol. 16, no. 1, pp. 1–29.

    Article  Google Scholar 

  26. Evans, R.A. and Jones, M.B., Plant height times ground cover versus clipped samples for estimation forage production, Agron. J., vol. 50, pp. 504–506.

  27. Fedor, A. and Vasas, V., The robustness of keystone indices in food webs, J. Theor. Biol., 2009, vol. 260, pp. 372–378.

    Article  PubMed  Google Scholar 

  28. Frey, T., On the phytocoenological value of a species, Eesti NSV Teaduste Akad. Toimetised. Biol. Seeria, 1965, vol. 14, no. 1, pp. 83–94.

    Google Scholar 

  29. Frey, T.E.-A., Some aspects of the phytocenotic significance of a species in a plant community, Bot. Zh., 1966, vol. 51, no. 8, pp. 1073–1084.

    Google Scholar 

  30. Glazier, D.S., Beyond the ‘3/4 power law’: variation in the inter- and intraspecific scaling of metabolic rate in animals, Biol. Rev., 2005, vol. 80, pp. 611–662.

    Article  PubMed  Google Scholar 

  31. Glazier, D.S., A unifying explanation for diverse metabolic scaling in animals and plants, Biol. Rev., 2010, vol. 85, pp. 111–138.

    Article  PubMed  Google Scholar 

  32. Hanson, H.C., A comparison of methods of botanical analysis of the native prairie in western North Dakota, J. Agricult. Res., 1934, vol. 49, pp. 815–842.

    Google Scholar 

  33. Hutchinson, G.E., Concluding remarks, in Cold Spring Harbour Symposia on Quantitative Biology, New York: Cold Spring Harbor, 1957, vol. 22, pp. 415–427.

  34. Ioganzen, B.G. and Faizova, L.V., On the determination of indicators of occurrence, abundance, and biomass and their ratio in some aquatic organisms, in Elementy vodnykh ekosistem (Elements of Aquatic Ecosystems), Moscow: Nauka, 1978, pp. 215–225.

  35. Ipatov, V.S., Ponyatovskaya, V.M. and Syrokomskaya, I.V. Experience of a comparative assessment of the involvement of a species in the structure of a meadow community, Bot. Zh., 1961, vol. 46, no. 9, pp. 1346–1348.

    Google Scholar 

  36. Iverson, L.R. and Prasad, A.M., Predicting abundance of 80 tree species following climate change in the eastern United States, Ecol. Monogr., 1998, vol. 68, no. 4, pp. 465–485.

    Article  Google Scholar 

  37. Iverson, L.R., Prasad, A.M., Matthews, S.N., and Peters, M., Estimating potential habitat for 134 eastern US tree species under six climate scenarios, Forest Ecol. Manage., 2008, vol. 254, pp. 390–406.

    Article  Google Scholar 

  38. Iverson, L.R., Prasad, A.M., Matthews, S.N., and Peters, M.P., Lessons learned while integrating habitat, dispersal, disturbance, and life-history traits into species habitat models under climate change, Ecosystems, 2011, vol. 14, pp. 1005–1020.

    Article  Google Scholar 

  39. Jordán, F., Liu, W.C., and Davis, A.J., Topological keystone species: measures of positional importance in food webs, Oikos, 2006, vol. 112, pp. 535–546.

    Article  Google Scholar 

  40. Kayama, R., New methods of quantitative representation of the structure of plant communities. IV. On the summed dominance ratio weighted by the plant weight, Jpn. J. Ecol., 1961, vol. 11, no. 4, pp. 135–139.

    Google Scholar 

  41. Kesminas, V.A., Counting the species composition, abundance, and biomass of fish in different biotopes of the Myarkis River basin, in Materialy 14 (22) zasedaniya sovetskoi rabochei gruppy po proektu № 8b “Vid i ego produktivnost’ v areale” (Proc. 14 (22) Meeting of the Soviet Working Group on Project No. 8b “Species and Its Productivity in the Range”), Vilnius: Inst. Zool. Parazitol. Akad. Nauk LitSSR, 1984, pp. 55–60.

  42. Kownacki, A., Taxocens of Chironomidae in streams of the Polish High Tatra Mts, Acta Hydrobiol., 1971, vol. 13, no. 4, pp. 439–464.

    Google Scholar 

  43. Kucheruk, N.V. and Savilova, T.A., Quantitative and ecological characteristics of the benthic fauna of the shelf and the upper slope of the North Peruvian upwelling area, Byull. Mosk. O-va Ispyt. Prir., Otd. Biol., 1985, vol. 90, no. 6, pp. 70–79.

    Google Scholar 

  44. Kurkin, K.A., Growth dynamics of grasses on irrigated cultivated pastures, in Melioratsiya zemel’ Meshcherskoi nizmennosti (Land Reclamation of the Meshchera Lowland), Ryazan: Vses. Nauchno-Issled. Inst. Gidrotekhn. Melioratsii, 1974, pp. 54–68.

  45. Lindsey, A.A., Sampling methods and community attributes in forest ecology, For. Sci., 1956, vol. 2, no. 1, pp. 287–296.

    Google Scholar 

  46. Lyubin, V.A., Changes in the composition of the oligochaete fauna of the Kuibyshev Reservoir, Gidrobiol. Zh., 1974, vol. 10, no. 6, pp. 47–52.

    Google Scholar 

  47. Makarevich, V.N., Dutch methods of counting species abundance according to De Vries in comparison with other methods for determining the involvement of species in meadow herbage, Bot. Zh., 1966, vol. 51, no. 2, pp. 293–304.

    Google Scholar 

  48. Malyshev, L.I., Floristic zoning based on quantitative traits, Bot. Zh., 1973, vol. 58, no. 11, pp. 1581–1588.

    Google Scholar 

  49. Mandal, G. and Joshi, S.P., Analysis of vegetation dynamics and phytodiversity from three dry deciduous forests of Doon Valley, Western Himalaya, India, J. Asia-Pacific Biodiversity, 2014, vol. 7, no. 3, pp. 292–304.

    Article  Google Scholar 

  50. McIntosh, R.P., The York woods, a case history of forest succession in southern Wisconsin, Ecology, 1957, vol. 38, no. 1, pp. 29–31.

    Article  Google Scholar 

  51. Mirkin, B.M. and Rozenberg, G.S., Tolkovyi slovar’ sovremennoi fitotsenologii (Explanatory Dictionary of Modern Phytocenology), Moscow: Nauka, 1983.

  52. Montès, N., Gauquelin, T., Badri, W., Bertaudière, V., and Zaoui, El.H., A non-destructive method for estimating above-ground forest biomass in threatened woodlands, For. Ecol. Manage., 2000, vol. 130, nos. 1–3, pp. 37–46.

    Article  Google Scholar 

  53. Mordukhai-Boltovskoi, F.D., Composition and distribution of benthos in the Taganrog Bay, Rab. Dono-Kuban. Nauchn. Rybokhoz. Stn., Rostov-on-Don: Azovo-Chernomorsk. Reg. Knizh. Izd.., 1937, no. 5, pp. 3–83.

  54. Mordukhai-Boltovskoi, F.D., On annual changes in the benthos of the Taganrog Bay, Zool. Zh., 1939, vol. 18, no. 6, pp. 989–1009.

    Google Scholar 

  55. Mordukhai-Boltovskoi, F.D., Materials on the hydrobiology of the Miusskii estuary, Uch. Zap. Rost. n/D Gos. Univ., 1948, vol. 12, no. 1, pp. 101–119.

    Google Scholar 

  56. Mori, S., Yamaji, K., Ishida, A., Prokushkin, S.G., Masyagina, O.V., Hagihara, A., Hoque, A.T.M.R., Suwa, R., Osawa, A., Nishizono, T., Ueda, T., and Kinjo, M., Mixed-power scaling of whole-plant respiration from seedlings to giant trees, Proc. Natl. Acad. Sci. U. S. A., 2010, vol. 107, pp. 1447–1451.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Mueller-Dombois, D. and Ellenberg, H., Aims and Methods of Vegetation Ecology, New York: Wiley, 1974.

    Google Scholar 

  58. Naumov, A.G., Biogeographic nature of the leading zooplankton species of the Pacific sector of the Southern Ocean, Tr. Vses. Nauchno-Issled. Inst. Morsk. Rybn. Khoz. Okeanogr., 1973, vol. 84, no. 4, pp. 148–158.

    Google Scholar 

  59. Norin, B.N., The use of the synusial structure of the vegetation cover for the florocenotic analysis of geobotanical units, Bot. Zh., 1978, vol. 63, no. 4, pp. 544–547.

    Google Scholar 

  60. Numata, M. and Yoda, K., The community structure and succession of artificial grasslands. I, Jpn. Soc. Grassland Sci., 1957, vol. 3, pp. 4–11.

    Google Scholar 

  61. Osipov, S.V., The quantitative index of the species participation in a plant community based on the projective cover and height, Bot. Zh., 1991, vol. 76, no. 5, pp. 97–103.

    Google Scholar 

  62. Osipov, S.V., The investigation in the structure of the vegetation cover based on comparison of neighboring areas, Bot. Zh., 1992, vol. 77, no. 8, pp. 127–135.

    Google Scholar 

  63. Palii, V.F., Quantitative indices for treatment of faunistic material, Zool. Zh., 1961, vol. 40, no. 1, pp. 3–6.

    Google Scholar 

  64. Pandeya, S.C., On some new concept in phytosociological studies of grasslands. I. Dominance diagrams, J. Ind. Bot. Soc., 1961, vol. 40, no. 2, pp. 263–266.

    Google Scholar 

  65. Pasto, J.K., Allison, J.R., and Washko, J.B., Ground cover and height of sward as a means of estimating pasture production, Agron. J., 1957, vol. 49, no. 8, pp. 407–409.

    Article  Google Scholar 

  66. Petrov, K.M., Biocoenoses of loose ground of the Black Sea part of the underwater slope of the Taman Peninsula, Zool. Zh., 1961, vol. 40, no. 3, pp. 318–325.

    Google Scholar 

  67. Ponyatovskaya, V.M. and Syrokomskaya, I.V., Experience of comparative assessment of the involvement of a species in the structure of a meadow community, Tr. Bot. Inst. Akad. Nauk SSSR, Ser. 3: Geobot., 1960, no. 12, pp. 171–180.

  68. Rabotnov, T.A., Experience of using the principle of continuity of vegetation in the study of vegetation in Wisconsin (USA), Byull. Mosk. O-va Ispyt. Prir., Otd. Biol., 1963, vol. 68, no. 4, pp. 147–151.

    Google Scholar 

  69. Raunkiaer, C., Statistical researches on plant formations, in The Life Forms of Plants and Statistical Plant Geography, Raunkiaer, C., Ed., Oxford: Clarendon Press, 1934, pp. 379–424.

    Google Scholar 

  70. Ružička, M., Anwendung mathematisch-statistischer methoden in der geobotanik (synthetische bearbeitung von Aufnahmen), Biologia, 1958, vol. 13, no. 9, pp. 647–661.

    Google Scholar 

  71. Sokolova, M.N., Zezina, O.N., and Kamenskaya, O.E., Meiobenthos—the subject and objectives of the study, in Issledovaniya glubokovodnogo bentosa (Deep Sea Benthos Research), Kuznetsov, A.P. and Vinogradov, N.G., Eds., Moscow: Nauka, 1982, pp. 19–30.

  72. Sviridenko, B.F., Flora i rastitel’nost’ vodoemov Severnogo Kazakhstana (Flora and Vegetation of Water Bodies of Northern Kazakhstan), Omsk: Omsk. Gos. Pedagog. Univ., 2000.

  73. Telyatnikov, M.Yu., Comparative analysis of local floras in the northwestern part of the Putorana Plateau, Sib. Ekol. Zh., 2010, no. 6, pp. 919–928.

  74. Uranov, A.A., On the coupling of components of a plant coenosis, Uch. Zap. Mosk. Gos. Pedagog. Inst., 1935, no. 1, pp. 59–85.

  75. Urrego, L.E., Molina, E.C., and Suarez, J.A., Environmental and anthropogenic influences on the distribution, structure, and floristic composition of mangrove forests of the Gulf of Uraba (Colombian Caribbean), Aquat. Bot., 2014, vol. 114, pp. 42–49.

    Article  Google Scholar 

  76. Vilenkin, B.Ya., On the interpretation of data on quantitative collections of benthos, Okeanologiya, 1965, vol. 5, no. 1, pp. 128–133.

    Google Scholar 

  77. Vilenkin, B.Ya. and Vilenkina, M.N., Dykhanie vodnykh b-espozvonochnykh (Respiration of Aquatic Invertebrates), Itogi Nauki Tekhn., Ser.: Zool. Bespozv., Moscow: VINITI, Akad. Nauk SSSR, 1979, vol. 6.

  78. Violle, C. and Jiang, L., Towards a trait-based quantification of species niche, J. Plant Ecol., 2009, vol. 2, no. 2, pp. 87–93.

    Article  Google Scholar 

  79. De Vries, D.M., Methods used in scientific plant sociology and in agricultural botanical grassland research, Herbage Rev., 1937, vol. 5, no. 1, pp. 187–193.

    Google Scholar 

  80. De Vries, D.M., The plant sociological combined specific frequency and order method, Chronica Bot. Natl. Plant Sci. Newsmagazine, 1938, vol. 4, no. 2, pp. 115–117.

    Google Scholar 

  81. De Vries, D.M. and Boer, T.A., Methods used in botanical grassland research in the, Netherlands: and their application, Herbage Abstr., 1959, vol. 29, no. 1, pp. 1–7.

    Google Scholar 

  82. Whitford, P.B., Distribution of woodland plants in relation to succession and clonal growth, Ecology, 1949, vol. 30, no. 2, pp. 199–208.

    Article  Google Scholar 

  83. Xaud, H.A.M., Martins, F.S.R., and Dos Santos, J.R., Tropical forest degradation by mega-fires in the northern Brazilian Amazon, For. Ecol. Manage., vol. 294, pp. 97–106.

  84. Zarubin, S.I., Analysis of the dominants of herbaceous plant communities in the forest-steppe zone of the Tyumen oblast, in Struktura i dinamika rastitel’nogo pokrova (The Structure and Dynamics of the Vegetation Cover), Serebryakova, T.I., Editor-in-Chief, Moscow: Nauka, 1977, pp. 50–51.

  85. Zarubin, S.I., Methodology for determining the stability and order of dominance of coenopopulations in herbaceous communities, Bot. Zh., 1988, vol. 73, no. 1, pp. 128–134.

    Google Scholar 

  86. Zatsepin, V.I., Zenkevich, L.A., and Filatova, Z.A., Materials on the quantitative counts of the benthic fauna of the littoral zone of the Kola Bay, Tr. Gos. Okeanograf. Inst., 1948, no. 6 (18), pp. 13–54.

  87. Zenkevich, L.A. and Brotskaya, V.A., Materials on the ecology of the leading forms of benthos in the Barents Sea, Uch. Zap. Mosk. Gos. Univ., Ser. Zool., 1937, no. 3, pp. 203–226.

  88. Zimbalevskaya, L.N., Invertebrate communities in the thickets of higher aquatic vegetation of the middle Dnieper River, Gidrobiol. Zh., 1965, vol. 1, no. 3, pp. 38–48.

    Google Scholar 

Download references

Funding

This study was supported by the Russian Foundation for Basic Research, project nos. 13-05-00677 and 18-05-00086.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. V. Osipov.

Ethics declarations

The author declares that he has no conflict of interest. This article does not contain any studies involving animals or human participants performed by the author.

Additional information

Translated by M. Batrukova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Osipov, S.V. The Importance of a Species in a Biocoenosis, a Class of Biocoenoses, and a Region: A Review of Combined Indexes. Biol Bull Russ Acad Sci 48, 379–393 (2021). https://doi.org/10.1134/S1062359021030109

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1062359021030109

Navigation